Abstract

A simple analysis of the fluid dynamics of the optical fiber coating process is used to predict the resulting coating thickness as a function of draw velocity, coating cup pressure, and resin viscosity for a cylindrical coating die. The effects of surface tension forces and viscous heating are assessed. The analysis is compared to experimental data and found to give good predictions.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. France, P. L. Dunn, “Optical Fiber Protection by Solution Plastic Coating,” in Proceedings, Second European Conference on Optical Fiber Communication, (Societe des Electriciéns, des Electroniciens, et des Radioelectriciens, Paris, 1976), p. 177.
  2. U. C. Paek, C. M. Schroeder, “Coating of Optical Fibers with a Conical Shape Applicator,” Fiber Integ. Opt. 2, 287 (1979).
    [CrossRef]
  3. U. C. Paek, C. M. Schroeder, “High Speed Coating of Optical Fibers with UV Curable Materials at a Rate of Greater Than 5 m/sec,” Appl. Opt. 20, 4028 (1981).
    [CrossRef] [PubMed]
  4. S. Torza, “The Continuous Coating of Glass Fibers,” J. Appl. Phys. 47, 4017 (1976).
    [CrossRef]
  5. K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura, “High-Speed Coating of Optical Fibers with Thermally Curable Silicone Resin Using a Pressurized Die,” Electron. Lett. 18, 713 (1982).
    [CrossRef]
  6. U. C. Paek, C. M. Schroeder, “High Strength in a Long Length for Fibers Coated at a Speed of 5 m/s,” IEEE/OSA J. Lightwave Technol. LT-2, 354 (1984).
    [CrossRef]
  7. E. Mitsoulis, “Finite Element Analysis of Wire Coating,” Polym. Eng. Sci., to be published.
  8. A. J. Ward-Smith, Internal Fluid Flow (Oxford U.P., London, 1980).
  9. M. Wagatsuma, T. Kimura, Y. Shuto, S. Yamakawa, “Optical Fiber Coating Speed Prediction from Flow Properties of Coating Materials,” Electron. Lett. 18, 731 (1982).
    [CrossRef]

1984

U. C. Paek, C. M. Schroeder, “High Strength in a Long Length for Fibers Coated at a Speed of 5 m/s,” IEEE/OSA J. Lightwave Technol. LT-2, 354 (1984).
[CrossRef]

1982

M. Wagatsuma, T. Kimura, Y. Shuto, S. Yamakawa, “Optical Fiber Coating Speed Prediction from Flow Properties of Coating Materials,” Electron. Lett. 18, 731 (1982).
[CrossRef]

K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura, “High-Speed Coating of Optical Fibers with Thermally Curable Silicone Resin Using a Pressurized Die,” Electron. Lett. 18, 713 (1982).
[CrossRef]

1981

1979

U. C. Paek, C. M. Schroeder, “Coating of Optical Fibers with a Conical Shape Applicator,” Fiber Integ. Opt. 2, 287 (1979).
[CrossRef]

1976

S. Torza, “The Continuous Coating of Glass Fibers,” J. Appl. Phys. 47, 4017 (1976).
[CrossRef]

Chida, K.

K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura, “High-Speed Coating of Optical Fibers with Thermally Curable Silicone Resin Using a Pressurized Die,” Electron. Lett. 18, 713 (1982).
[CrossRef]

Dunn, P. L.

P. W. France, P. L. Dunn, “Optical Fiber Protection by Solution Plastic Coating,” in Proceedings, Second European Conference on Optical Fiber Communication, (Societe des Electriciéns, des Electroniciens, et des Radioelectriciens, Paris, 1976), p. 177.

France, P. W.

P. W. France, P. L. Dunn, “Optical Fiber Protection by Solution Plastic Coating,” in Proceedings, Second European Conference on Optical Fiber Communication, (Societe des Electriciéns, des Electroniciens, et des Radioelectriciens, Paris, 1976), p. 177.

Kimura, T.

K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura, “High-Speed Coating of Optical Fibers with Thermally Curable Silicone Resin Using a Pressurized Die,” Electron. Lett. 18, 713 (1982).
[CrossRef]

M. Wagatsuma, T. Kimura, Y. Shuto, S. Yamakawa, “Optical Fiber Coating Speed Prediction from Flow Properties of Coating Materials,” Electron. Lett. 18, 731 (1982).
[CrossRef]

Mitsoulis, E.

E. Mitsoulis, “Finite Element Analysis of Wire Coating,” Polym. Eng. Sci., to be published.

Paek, U. C.

U. C. Paek, C. M. Schroeder, “High Strength in a Long Length for Fibers Coated at a Speed of 5 m/s,” IEEE/OSA J. Lightwave Technol. LT-2, 354 (1984).
[CrossRef]

U. C. Paek, C. M. Schroeder, “High Speed Coating of Optical Fibers with UV Curable Materials at a Rate of Greater Than 5 m/sec,” Appl. Opt. 20, 4028 (1981).
[CrossRef] [PubMed]

U. C. Paek, C. M. Schroeder, “Coating of Optical Fibers with a Conical Shape Applicator,” Fiber Integ. Opt. 2, 287 (1979).
[CrossRef]

Sakaguchi, S.

K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura, “High-Speed Coating of Optical Fibers with Thermally Curable Silicone Resin Using a Pressurized Die,” Electron. Lett. 18, 713 (1982).
[CrossRef]

Schroeder, C. M.

U. C. Paek, C. M. Schroeder, “High Strength in a Long Length for Fibers Coated at a Speed of 5 m/s,” IEEE/OSA J. Lightwave Technol. LT-2, 354 (1984).
[CrossRef]

U. C. Paek, C. M. Schroeder, “High Speed Coating of Optical Fibers with UV Curable Materials at a Rate of Greater Than 5 m/sec,” Appl. Opt. 20, 4028 (1981).
[CrossRef] [PubMed]

U. C. Paek, C. M. Schroeder, “Coating of Optical Fibers with a Conical Shape Applicator,” Fiber Integ. Opt. 2, 287 (1979).
[CrossRef]

Shuto, Y.

M. Wagatsuma, T. Kimura, Y. Shuto, S. Yamakawa, “Optical Fiber Coating Speed Prediction from Flow Properties of Coating Materials,” Electron. Lett. 18, 731 (1982).
[CrossRef]

Torza, S.

S. Torza, “The Continuous Coating of Glass Fibers,” J. Appl. Phys. 47, 4017 (1976).
[CrossRef]

Wagatsuma, M.

M. Wagatsuma, T. Kimura, Y. Shuto, S. Yamakawa, “Optical Fiber Coating Speed Prediction from Flow Properties of Coating Materials,” Electron. Lett. 18, 731 (1982).
[CrossRef]

K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura, “High-Speed Coating of Optical Fibers with Thermally Curable Silicone Resin Using a Pressurized Die,” Electron. Lett. 18, 713 (1982).
[CrossRef]

Ward-Smith, A. J.

A. J. Ward-Smith, Internal Fluid Flow (Oxford U.P., London, 1980).

Yamakawa, S.

M. Wagatsuma, T. Kimura, Y. Shuto, S. Yamakawa, “Optical Fiber Coating Speed Prediction from Flow Properties of Coating Materials,” Electron. Lett. 18, 731 (1982).
[CrossRef]

Appl. Opt.

Electron. Lett.

K. Chida, S. Sakaguchi, M. Wagatsuma, T. Kimura, “High-Speed Coating of Optical Fibers with Thermally Curable Silicone Resin Using a Pressurized Die,” Electron. Lett. 18, 713 (1982).
[CrossRef]

M. Wagatsuma, T. Kimura, Y. Shuto, S. Yamakawa, “Optical Fiber Coating Speed Prediction from Flow Properties of Coating Materials,” Electron. Lett. 18, 731 (1982).
[CrossRef]

Fiber Integ. Opt.

U. C. Paek, C. M. Schroeder, “Coating of Optical Fibers with a Conical Shape Applicator,” Fiber Integ. Opt. 2, 287 (1979).
[CrossRef]

IEEE/OSA J. Lightwave Technol.

U. C. Paek, C. M. Schroeder, “High Strength in a Long Length for Fibers Coated at a Speed of 5 m/s,” IEEE/OSA J. Lightwave Technol. LT-2, 354 (1984).
[CrossRef]

J. Appl. Phys.

S. Torza, “The Continuous Coating of Glass Fibers,” J. Appl. Phys. 47, 4017 (1976).
[CrossRef]

Other

P. W. France, P. L. Dunn, “Optical Fiber Protection by Solution Plastic Coating,” in Proceedings, Second European Conference on Optical Fiber Communication, (Societe des Electriciéns, des Electroniciens, et des Radioelectriciens, Paris, 1976), p. 177.

E. Mitsoulis, “Finite Element Analysis of Wire Coating,” Polym. Eng. Sci., to be published.

A. J. Ward-Smith, Internal Fluid Flow (Oxford U.P., London, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Geometry of the fiber coating flow.

Fig. 2
Fig. 2

Predicted and measured coating thickness, k = 0.3205.

Fig. 3
Fig. 3

Predicted and measured coating thickness, k = 0.3472.

Fig. 4
Fig. 4

Measured fluctuations of coating thickness as a percentage of the coating thickness.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

L e = 0 . 0119 R ( 1 k ) Re .
Re = 2 ρ V R ( 1 k ) / μ ,
Δ p L = μ r r ( r u r ) ,
r = R : u = 0 ; r = k R : u = V .
u V = 2 Φ [ 1 ( r / R ) 2 ( 1 k 2 ) ln ( r / R ) / ln k ] + ln ( r / R ) / ln k ,
Φ = Δ p R 2 / 8 μ L V .
τ = μ d u d r = μ V { 2 Φ [ 2 r R 2 + ( 1 k 2 ) r ln k ] 1 r ln k } .
Q = 2 π k R R u r d r ,
Q c = π V [ ( k R + t ) 2 ( k R ) 2 ] = q Q ,
t R = { q Φ [ 1 k 4 + ( 1 k 2 ) 2 / ln k ] q [ k 2 + ( 1 k 2 ) / 2 ln k ] + k 2 } 1 / 2 k .
Φ = [ 4 k 2 ln k + 2 ( 1 k 2 ) ] 1 .
F S = 2 π σ ( k R + t ) ,
F V = 2 π R L τ w ,
F S F V = σ R μ L V [ 1 2 ( k 2 1 ) ln k ] 1 / 2 ,
ρ C p u T x = k r r ( r T r ) + μ ( u r ) 2 ,
d T ¯ d x = 2 π k R R u T x r d r / 2 π k R R u r d r .
d T ¯ d x = 2 π ρ C p Q k R R μ ( u r ) 2 r d r .
d T ¯ d x = 2 μ V ρ C p R 2 { 4 Φ 2 [ ( 1 k 4 ) ln k + ( 1 k 2 ) 2 ] 1 Φ [ ( 1 k 4 ) ln k + ( 1 k 2 ) 2 ] k 2 ln k ( 1 k 2 ) / 2 } .
μ = 5 . 3 kg / msec at 25 ° C = 1 . 9 kg / msec at 35 ° C = 0 . 35 kg / msec at 45 ° C , ρ = 1100 kg / m 3 at 25 ° C , σ = 0 . 0215 N / m at 25 ° C , C p = 1 . 76 kJ / kg ° C .

Metrics