Abstract

An infared image guide made of bundled As–S glass fiber cores has been developed. The transmission range of this fiber was 2–6 μm. At the 3.3- and 4.8-μm wavelengths the minimum optical loss was 0.6 dB/m. With this image guide efficient transmission of the thermal image was experimentally established.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. Timper, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
    [CrossRef]
  2. S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).
  3. T. J. Bridges, J. S. Hasiak, A. R. Strand, “Single-crystal AgBr Infrared Optical Fibers,” Opt. Lett. 5, 85 (1980).
    [CrossRef] [PubMed]
  4. T. Miyashita, Y. Terunuma, “Optical Transmission Loss of As—S Glass Fiber in 1.0–5.5μm Wavelength Range,” Jpn. J. Appl. Phys. 21, L75 (1982).
    [CrossRef]
  5. S. Mitachi, T. Manabe, “Fluoride Glass Fiber for Infrared Transmission,” Jpn. J. Appl. Phys. 19, L313 (1980).
    [CrossRef]
  6. S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
    [CrossRef] [PubMed]
  7. T. Arai, M. Kikuchi, “Carbon Monoxide Laser Power Delivery with an As2S3 Infrared Glass Fiber,” Appl. Opt. 23, 3017 (1984).
    [CrossRef] [PubMed]
  8. K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
    [CrossRef]
  9. H. Sato, E. Tsuchida, S. Sakuragi, “Optical Properties of Polycrystalline KRS-5 Fiber at Individual CO2 Laser Lines: Magnetooptic Effects,” Appl. Opt. 23, 2633 (1984).
    [CrossRef] [PubMed]

1984 (2)

1982 (1)

T. Miyashita, Y. Terunuma, “Optical Transmission Loss of As—S Glass Fiber in 1.0–5.5μm Wavelength Range,” Jpn. J. Appl. Phys. 21, L75 (1982).
[CrossRef]

1981 (3)

S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).

K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
[CrossRef]

S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

1980 (2)

T. J. Bridges, J. S. Hasiak, A. R. Strand, “Single-crystal AgBr Infrared Optical Fibers,” Opt. Lett. 5, 85 (1980).
[CrossRef] [PubMed]

S. Mitachi, T. Manabe, “Fluoride Glass Fiber for Infrared Transmission,” Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

1978 (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. Timper, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Arai, T.

Bridges, T. J.

Gentile, A. L.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. Timper, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Hasiak, J. S.

Horiguhci, M.

K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
[CrossRef]

Imagawa, K.

S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).

Jinguji, K.

K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
[CrossRef]

Kanamori, T.

K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
[CrossRef]

Kikuchi, M.

Kotani, H.

S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).

Kubo, Y.

Manabe, T.

K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
[CrossRef]

S. Mitachi, T. Manabe, “Fluoride Glass Fiber for Infrared Transmission,” Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

Mitachi, S.

K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
[CrossRef]

S. Mitachi, T. Manabe, “Fluoride Glass Fiber for Infrared Transmission,” Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

Miyashita, T.

T. Miyashita, Y. Terunuma, “Optical Transmission Loss of As—S Glass Fiber in 1.0–5.5μm Wavelength Range,” Jpn. J. Appl. Phys. 21, L75 (1982).
[CrossRef]

Morikawa, T.

S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).

S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

Pinnow, D. A.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. Timper, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Saito, M.

S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).

S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

Sakuragi, S.

Sato, H.

Shimada, J.

S. Sakuragi, M. Saito, Y. Kubo, K. Imagawa, H. Kotani, T. Morikawa, J. Shimada, “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).

Standlee, A. G.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. Timper, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Strand, A. R.

Terunuma, Y.

T. Miyashita, Y. Terunuma, “Optical Transmission Loss of As—S Glass Fiber in 1.0–5.5μm Wavelength Range,” Jpn. J. Appl. Phys. 21, L75 (1982).
[CrossRef]

Timper, A.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. Timper, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Tsuchida, E.

Adv. Ceramics (1)

S. Sakuragi, K. Imagawa, M. Saito, H. Kotani, T. Morikawa, J. Shimada, “IR Transmission Capabilities of Thallium Halide and Silver Halide Optical Fibers,” Adv. Ceramics 2, 84 (1981).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. Timper, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Jpn. J. Appl. Phys. (3)

K. Jinguji, M. Horiguhci, S. Mitachi, T. Kanamori, T. Manabe, “Infared Power Delivery in the 2.7 μm Band in Fluoride Glass Fiber,” Jpn. J. Appl. Phys. 20, L392 (1981).
[CrossRef]

T. Miyashita, Y. Terunuma, “Optical Transmission Loss of As—S Glass Fiber in 1.0–5.5μm Wavelength Range,” Jpn. J. Appl. Phys. 21, L75 (1982).
[CrossRef]

S. Mitachi, T. Manabe, “Fluoride Glass Fiber for Infrared Transmission,” Jpn. J. Appl. Phys. 19, L313 (1980).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Fabrication process of an As–S glass fiber.

Fig. 2
Fig. 2

Cross-sectional picture of an As–S glass fiber. The core is 500 μm in diameter; the Teflon FEP cladding is 50 μm thick.

Fig. 3
Fig. 3

Fabrication method of an IIG.

Fig. 4
Fig. 4

Cross-sectional picture of an IIG. This IIG is 2.0 mm in diameter, including 200 As–S glass fiber cores each 90-μm diameter.

Fig. 5
Fig. 5

Measurement system for the transmission loss of an IIG. Measurement was achieved for two IIGs of different lengths (cutback method).

Fig. 6
Fig. 6

Optical loss spectrum of an IIG.

Fig. 7
Fig. 7

Measurement system for the transmissivity difference among cores included in an IIG.

Fig. 8
Fig. 8

Calibration curve of the temperature displayed on a color monitor vs radiation incident on the IR TV camera.

Fig. 9
Fig. 9

Thermal image of a blackbody transferred by an IIG. Temperature is indicated by sixteen colors. Each spot in the image corresponds to a core of the IIG.

Fig. 10
Fig. 10

Histogram of the temperature indicated by spots corresponding to fiber cores. The difference of the indicated temperature is caused by the difference of the transmissivity of fiber cores.

Fig. 11
Fig. 11

Thermal image of an electric iron observed through an IIG.

Fig. 12
Fig. 12

Observation of an electric iron behind the thick paper with an H-shaped cutout. The color monitor shows the character H as a thermal image.

Fig. 13
Fig. 13

Thermal image of a candle flame observed through an IIG.

Tables (1)

Tables Icon

Table 1 Specification of the IIGs Prepared for the Present Experiment

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N . A . = n 0 2 n 1 2 = 2 . 4 2 1 . 3 2 > 1 ,

Metrics