Abstract

Temperature dependence of the Faraday effect is investigated for As2S3 fiber at 3.39 μm, obtaining a Verdet constant V of 1.62 × 10−2 min/cm · G at room temperature and a temperature-dependence term coefficient of 10.67 min · K/cm · G in the experiments. The V value obtained at 25°C is consistent with the theoretical estimates based on the first derivative of known refractive indices with respect to the wavelength. The temperature-dependent term is also discussed theoretically.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
    [CrossRef]
  2. J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).
  3. T. J. Bridges, J. S. Hasiak, A. R. Strnad, “Single-Crystal AgBr Infrared Optical Fibers,” Opt. Lett. 5, 85 (1980).
    [CrossRef] [PubMed]
  4. S. Sakuragi et al., “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
    [CrossRef] [PubMed]
  5. H. Sato, E. Tsuchida, S. Sakuragi, “Dispersive Properties of a Flexible KRS-5 Fiber on Magneto-Optical Effects at Individual CO2 Laser Lines,” Opt. Lett. 8, 180 (1983).
    [CrossRef] [PubMed]
  6. H. Sato, E. Tsuchida, S. Sakuragi, “Optical Properties of Polycrystalline KRS-5 Fiber at Individual CO2 Laser Lines: Magnetooptic Effects,” Appl. Opt. 23, 2633 (1984).
    [CrossRef] [PubMed]
  7. H. Sato, E. Tsuchida, M. Saito, “Magnetooptic-Effect Analysis of Optical Fibers Using Intracavity Scheme: Application to KRS-5 in IR Regions,” Jpn. J. Appl. Phys. 24, 214 (1985).
    [CrossRef]
  8. H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).
  9. See, for example, C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), p. 435.
  10. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), p. 6–54.
  11. J. A. Davis, R. M. Bunch, “Temperature Dependence of the Faraday Rotation of Hoya FR-5 Glass,” Appl. Opt. 23, 633 (1984).
    [CrossRef] [PubMed]
  12. T. Arai, M. Kikuchi, “Carbon Monoxide Laser Power Delivery with an As2S3 Infrared Glass Fiber,” Opt. 23, 3017 (1984).

1985 (1)

H. Sato, E. Tsuchida, M. Saito, “Magnetooptic-Effect Analysis of Optical Fibers Using Intracavity Scheme: Application to KRS-5 in IR Regions,” Jpn. J. Appl. Phys. 24, 214 (1985).
[CrossRef]

1984 (3)

1983 (1)

1981 (2)

S. Sakuragi et al., “KRS-5 Optical Fibers Capable of Transmitting High-Power CO2 Laser Beam,” Opt. Lett. 6, 629 (1981).
[CrossRef] [PubMed]

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).

1980 (1)

1978 (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

1897 (1)

H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).

Arai, T.

T. Arai, M. Kikuchi, “Carbon Monoxide Laser Power Delivery with an As2S3 Infrared Glass Fiber,” Opt. 23, 3017 (1984).

Becquerel, H.

H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).

Bobbs, B.

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Braunstein, M.

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Braunstein, R.

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Bridges, T. J.

Bunch, R. M.

Davis, J. A.

Gentile, A. L.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Harrington, J. A.

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Hasiak, J. S.

Hobrock, L. M.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Kikuchi, M.

T. Arai, M. Kikuchi, “Carbon Monoxide Laser Power Delivery with an As2S3 Infrared Glass Fiber,” Opt. 23, 3017 (1984).

Kittel, C.

See, for example, C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), p. 435.

Pinnow, D. A.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Saito, M.

H. Sato, E. Tsuchida, M. Saito, “Magnetooptic-Effect Analysis of Optical Fibers Using Intracavity Scheme: Application to KRS-5 in IR Regions,” Jpn. J. Appl. Phys. 24, 214 (1985).
[CrossRef]

Sakuragi, S.

Sato, H.

Standlee, A. G.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Strnad, A. R.

Timper, A. J.

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

Tsuchida, E.

Adv. Ceram. (1)

J. A. Harrington, M. Braunstein, B. Bobbs, R. Braunstein, “Scattering Losses in Single and Polycrystalline Infrared Material for Infrared Fiber Applications,” Adv. Ceram. 2, 94 (1981).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. A. Pinnow, A. L. Gentile, A. G. Standlee, A. J. Timper, L. M. Hobrock, “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28 (1978).
[CrossRef]

C. R. Acad. Sci. (1)

H. Becquerel, “Sur une interprétation applicable au phénomène de Faraday et au phénomène de Zeeman,” C. R. Acad. Sci. 125, 679 (1897).

Jpn. J. Appl. Phys. (1)

H. Sato, E. Tsuchida, M. Saito, “Magnetooptic-Effect Analysis of Optical Fibers Using Intracavity Scheme: Application to KRS-5 in IR Regions,” Jpn. J. Appl. Phys. 24, 214 (1985).
[CrossRef]

Opt. (1)

T. Arai, M. Kikuchi, “Carbon Monoxide Laser Power Delivery with an As2S3 Infrared Glass Fiber,” Opt. 23, 3017 (1984).

Opt. Lett. (3)

Other (2)

See, for example, C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), p. 435.

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), p. 6–54.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus: (a) setup and (b) close-up of cooling portion of the fiber in a magnet.

Fig. 2
Fig. 2

Faraday rotation angle as a function of the dc magnetic field at room temperature.

Fig. 3
Fig. 3

Temperature dependence of the Verdet constant of As2S3 fiber.

Fig. 4
Fig. 4

Curve fitting of refractive indices for As2S3 glass at room temperature.

Fig. 5
Fig. 5

Coefficient of the temperature-dependent term for the Verdet constant.

Tables (1)

Tables Icon

Table I Specifications of As2S3 Fiber Used in the Experiments

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

θ F = ( π / λ ) ( n + n ) L f = V H L eff ,
V = ( e / 2 m c 2 ) λ ( d n / d λ ) ,
μ = g μ B J ,
g = 1 + J ( J + 1 ) + S ( S + 1 ) L ( L + 1 ) 2 J ( J + 1 ) ,
E = 1 2 N g μ B H { ( 2 J + 1 ) coth [ ( 2 J + 1 ) x / 2 J ] coth ( x / 2 J ) } ,
x = g μ B H J / k T .
M = E / H = N g μ B J B J ( x ) ,
B J ( x ) = 2 J + 1 2 J coth [ ( 2 J + 1 2 J ) x ] 1 2 J coth ( x 2 J ) ,
χ = [ N J ( J + 1 ) g 2 μ B 2 ] / 3 k T .
V ( T ) = V ( 1 + χ ) 1 / 2 A + B / T ,
A = ( e / 2 m c 2 ) λ ( d n / d λ ) T = ,
B = [ ( N g 2 μ B 2 J ( J + 1 ) / 6 k ] V .
n = 2 . 47576 0 . 03920 λ + 0 .00844λ 2 6 . 69722 × 10 4 λ 3 .
A = 1 . 99 × 10 2 min / cm · G , B = 10 . 67 ± 0 . 5 min · K / cm · G

Metrics