Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. W. Bode, Network Analysis and Feedback Amplifer Design (Van Nostrand, Reinhold, New York, 1959).
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).
  3. E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1977).

Bode, H. W.

H. W. Bode, Network Analysis and Feedback Amplifer Design (Van Nostrand, Reinhold, New York, 1959).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Hecht, E.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1977).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

Zajac, A.

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1977).

Other

H. W. Bode, Network Analysis and Feedback Amplifer Design (Van Nostrand, Reinhold, New York, 1959).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

E. Hecht, A. Zajac, Optics (Addison-Wesley, Reading, Mass., 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Michelson interferometer with two output beams A and B.

Fig. 2
Fig. 2

Ring interferometer with a single output beam A. The amplitudes at positions 1, 2, 3, and 4 are E 1 + , E 1 , t 1 E + + r 1 E exp ( i ϕ ), and E exp(iϕ).

Fig. 3
Fig. 3

Unit transmittance interferometer with two beam splitters and phase lengths ϕ1, ϕ2, and ϕ3 between them. The amplitudes at positions 1, 2, 3, 4, and 5 are E 1 + , E 1 , E 2 + , E 2 , and E3.

Fig. 4
Fig. 4

Ring interferometer with unit reflectance.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

t = t 1 r 1 2 exp ( i ϕ ) r 1 2 t 1 exp ( 2 i ϕ ) r 1 2 t 1 2 exp ( 3 i ϕ ) .
t = exp ( i ϕ ) [ 1 t 1 exp ( i ϕ ) ] / [ 1 t 1 exp ( i ϕ ) ] .
T = t · t * = 1 .
t = [ t 1 E + + r 1 E exp ( i ϕ ) ] / E + .
E = r 1 E + + t 1 E exp ( i ϕ ) ,
E 1 = r 1 E 1 + + t 1 E 2 exp ( i ϕ 3 ) ; E 2 = r 2 E 2 + + t 2 E 1 exp ( i ϕ 2 ) ; E 2 + exp ( i ϕ 1 ) = t 1 E 1 + + r 1 E 2 exp ( i ϕ 3 ) ; E 3 = t 2 E 2 + + r 2 E 1 exp ( i ϕ 2 ) .
t = E 3 / E 1 + = exp [ i ( ϕ 1 + ϕ 2 + ϕ 3 ) ] × 1 t 1 t 2 exp [ i ( ϕ 2 + ϕ 3 ) ] + r 1 r 2 exp [ i ( ϕ 1 + ϕ 3 ) ] 1 t 1 t 2 exp [ i ( ϕ 3 + ϕ 3 ) ] + r 1 r 2 exp [ i ( ϕ 1 + ϕ 3 ) ] .
r = exp ( i ϕ ) [ 1 r 1 exp ( i ϕ ) ] [ 1 r 1 exp ( i ϕ ) ] .

Metrics