Abstract

An investigation of in situ background normalization for obtaining sensitive and accurate concentration measurements with coherent anti-Stokes Raman spectroscopy (CARS) is reported. Flame species concentrations measured with CARS were in good agreement with IR laser absorption measurements of CO in extracted flame gases and with equilibrium calculations. Time-averaged detectivity for CO at the 1000-ppm level was obtained at 1900 K. Background normalization was also shown to be capable of improving CARS pulse-to-pulse signal reproducibility nearly to the shot-noise limit. We consider factors important for concentration measurements with CARS, including laser-induced Stark effects, accuracy of susceptibility calculations, and effects of different laser linewidth models.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
    [CrossRef]
  2. R. E. Teets, J. H. Bechtel, “CARS Spectra of Oxygen Atoms in Flames,” Opt. Lett. 6, 458 (1981).
    [CrossRef] [PubMed]
  3. L. P. Goss, G. L. Switzer, D. D. Trump, “Temperature and Species Concentration in Turbulent Flames by the CARS Technique,” J. Energy 7, 403 (1983).
    [CrossRef]
  4. R. L. Farrow, P. L. Mattern, L. A. Rahn, “Comparison between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame,” Appl. Opt. 21, 3119 (1982).
    [CrossRef] [PubMed]
  5. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Teller, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
    [CrossRef] [PubMed]
  6. B. Attal, M. Pealat, J. P. Taran, “CARS Diagnostics of Combustion,” AIAA-80-0282 (1980).
  7. F. S. Moya, “Flame Investigation by CARS,” Prog. Astronaut. Aeronaut. 53, 549 (1977).
  8. A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity with and without Nonresonance Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
    [CrossRef]
  9. R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979).
    [CrossRef]
  10. J.-L. Oudar, R. W. Smith, Y. R. Shen, “Polarization-SensitiveCARS,” Appl. Phys. Lett. 34, 758 (1979).
    [CrossRef]
  11. R. L. Farrow, P. L. Mattern, L. A. Rahn, “Crossed-beam,Background-free CARS Measurement in a Methane Diffusion Flame,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 668–69.
  12. J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980).
    [CrossRef] [PubMed]
  13. Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741 (1980).
    [CrossRef]
  14. L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30, 249 (1979).
    [CrossRef]
  15. S. A. J. Druet, J.-P. E. Taran, “CARS Spectroscopy,” Prog.Quantum Electron. 7, 1 (1981).
    [CrossRef]
  16. P. L. Varghese, R. K. Hanson, “Collision Width Measurements of CO in Combustion Gases Using a Tunable Diode Laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339 (1981).
    [CrossRef]
  17. G. J. Rosasco, W. Lempert, W. S. Hurst, “Line Interference Effects in the Vibrational Q-branch Spectra of N2 and CO,” Chem. Phys. Lett. 97, 435 (1983).
    [CrossRef]
  18. L. A. Rahn, A. Owyoung, M. E. Coltrin, M. L. Koszykowski, “The J-dependence of Nitrogen Q-branch Linewidths,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 694–95.
  19. L. A. Rahn, Sandia National Laboratories, Livermore; private communication.
  20. Fully resolved flame spectra from Ref. 18 show little line overlap.
  21. G. Guelachvili, “Absolute Wavenumbers and Molecular Constants of the Fundamentals Bands of 12C16O, 12C17O, 12C18O, 13C16O, 13C17O, 13C18O, and of the 2–1 Bands of 12C16O and 13C16O. Around 5 μm, by Fourier Spectroscopy Under Vacuum,” J. Mol. Spectrosc. 75, 251 (1979).
    [CrossRef]
  22. D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” in Astrophys. J. Lett. 291, L15 (1985).
    [CrossRef]
  23. T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
    [CrossRef]
  24. T. Lundeen, S.-Y. Hou, J. W. Nibler, “Nonresonant Third Order Susceptibilities for Various Gases,” J. Chem. Phys. 79, 6301 (1983).
    [CrossRef]
  25. G. J. Rosasco, W. S. Hurst, “Measurement of Resonant and Nonresonant Third Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” to be published in Phys. Rev. A00, 000 (1985).
  26. R. L. Farrow, L. A. Rahn, “Interpreting CARS Spectra Measured with Multi-mode Nd:YAG Pump Lasers,” to be published in J. Opt. Soc. Am. B.
  27. W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
    [CrossRef]
  28. See the discussion in Refs. 24 and 25. This correction factor includes a factor of 3 due to different definitions of the nonresonant susceptibility. (We are using the notation of Ref. 9.)
  29. H. W. Schrotter, H. W. Klockner, in “Raman Spectroscopy of Gases and Liquids,” A. Weber, Ed. (Springer, New York, 1979), pp. 123–201.
    [CrossRef]
  30. N. J. Bridge, A. D. Buckingham, “Polarization of Laser Light Scattered by Gases,” Proc. R. Soc. London Ser. A 295, 334 (1966).
    [CrossRef]
  31. H. Kataoka, S. Maeda, C. Hirose, “Effects of Laser Linewidth on the CARS Spectral Profile,” Appl. Spectrosc. 36, 565 (1982).
    [CrossRef]
  32. R. E. Teets, “Accurate Convolutions of CARS Spectra,” Opt. Lett. 9, 226 (1984).
    [CrossRef] [PubMed]
  33. Y. A. Yuratich, “Effects of Laser Linewidth on CARS,” Mol. Phys. 38, 625 (1979).
    [CrossRef]
  34. R. J. Hall, A. C. Eckbreth, “CARS: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.
  35. R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
    [CrossRef]
  36. L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
    [CrossRef]
  37. R. L. Farrow, L. A. Rahn, “Optical Stark Effects in Nonlinear Raman Spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, Eds. (Wiley, New York, 1982), pp. 159–60.
  38. R. A. Hill, P. Esherick, A. Owyoung, “High-resolution Stimulated Raman Spectroscopy of O2,” J. Mol. Spectrosc. 100, 119 (1983).
    [CrossRef]
  39. A. Owyoung, Sandia National Laboratories, Livermore; private communication.
  40. J. H. Stufflebeam, R. J. Hall, A. C. Eckbreth, “Investigation of the CARS Spectrum of Carbon Monoxide at High Pressure and Temperature,” Air Force Rocket Propulsion Laboratory Technical Report TR-84-042 (1984).
  41. S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Tech. 24, 227 (1981).
    [CrossRef]
  42. P. C. Malte, J. C. Kramlich, “Further Observations of the Effect of Sample Probes on Pollutant Gases Drawn from Flame Zones,” Combust. Sci. Tech. 22, 263 (1980).
    [CrossRef]
  43. L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on CARS Intensities,” Opt. Lett. 9, 223 (1984).
    [CrossRef] [PubMed]
  44. R. L. Farrow, L. A. Rahn, R. P. Lucht, in Proceedings, Ninth International Conference on Raman Spectroscopy, M. Tsuboi, Ed. (Chemical Society of Japan, Tokyo, 1984), pp. 340–41.These results show that the effect of field statistics appears to be less pronounced for overlapping Q-branch transitions in comparison to isolated lines.
  45. The dequil program was modified by R. J. Kee, Sandia National Laboratories, from the program stanjan, developed by W. C. Reynolds, Stanford University.

1985 (1)

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” in Astrophys. J. Lett. 291, L15 (1985).
[CrossRef]

1984 (3)

1983 (4)

R. A. Hill, P. Esherick, A. Owyoung, “High-resolution Stimulated Raman Spectroscopy of O2,” J. Mol. Spectrosc. 100, 119 (1983).
[CrossRef]

G. J. Rosasco, W. Lempert, W. S. Hurst, “Line Interference Effects in the Vibrational Q-branch Spectra of N2 and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

T. Lundeen, S.-Y. Hou, J. W. Nibler, “Nonresonant Third Order Susceptibilities for Various Gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

L. P. Goss, G. L. Switzer, D. D. Trump, “Temperature and Species Concentration in Turbulent Flames by the CARS Technique,” J. Energy 7, 403 (1983).
[CrossRef]

1982 (3)

1981 (5)

R. E. Teets, J. H. Bechtel, “CARS Spectra of Oxygen Atoms in Flames,” Opt. Lett. 6, 458 (1981).
[CrossRef] [PubMed]

S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

S. A. J. Druet, J.-P. E. Taran, “CARS Spectroscopy,” Prog.Quantum Electron. 7, 1 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision Width Measurements of CO in Combustion Gases Using a Tunable Diode Laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339 (1981).
[CrossRef]

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity with and without Nonresonance Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

1980 (5)

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
[CrossRef]

P. C. Malte, J. C. Kramlich, “Further Observations of the Effect of Sample Probes on Pollutant Gases Drawn from Flame Zones,” Combust. Sci. Tech. 22, 263 (1980).
[CrossRef]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980).
[CrossRef] [PubMed]

L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741 (1980).
[CrossRef]

1979 (6)

G. Guelachvili, “Absolute Wavenumbers and Molecular Constants of the Fundamentals Bands of 12C16O, 12C17O, 12C18O, 13C16O, 13C17O, 13C18O, and of the 2–1 Bands of 12C16O and 13C16O. Around 5 μm, by Fourier Spectroscopy Under Vacuum,” J. Mol. Spectrosc. 75, 251 (1979).
[CrossRef]

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

Y. A. Yuratich, “Effects of Laser Linewidth on CARS,” Mol. Phys. 38, 625 (1979).
[CrossRef]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979).
[CrossRef]

J.-L. Oudar, R. W. Smith, Y. R. Shen, “Polarization-SensitiveCARS,” Appl. Phys. Lett. 34, 758 (1979).
[CrossRef]

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30, 249 (1979).
[CrossRef]

1977 (1)

F. S. Moya, “Flame Investigation by CARS,” Prog. Astronaut. Aeronaut. 53, 549 (1977).

1967 (1)

W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

1966 (1)

N. J. Bridge, A. D. Buckingham, “Polarization of Laser Light Scattered by Gases,” Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

Attal, B.

B. Attal, M. Pealat, J. P. Taran, “CARS Diagnostics of Combustion,” AIAA-80-0282 (1980).

Beattie, I. R.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
[CrossRef]

Bechtel, J. H.

Black, J. D.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
[CrossRef]

Bridge, N. J.

N. J. Bridge, A. D. Buckingham, “Polarization of Laser Light Scattered by Gases,” Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

Buckingham, A. D.

N. J. Bridge, A. D. Buckingham, “Polarization of Laser Light Scattered by Gases,” Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

Coltrin, M. E.

L. A. Rahn, A. Owyoung, M. E. Coltrin, M. L. Koszykowski, “The J-dependence of Nitrogen Q-branch Linewidths,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 694–95.

Dobbs, G. M.

Druet, S. A. J.

S. A. J. Druet, J.-P. E. Taran, “CARS Spectroscopy,” Prog.Quantum Electron. 7, 1 (1981).
[CrossRef]

Eckbreth, A. C.

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Teller, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
[CrossRef] [PubMed]

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity with and without Nonresonance Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980).
[CrossRef] [PubMed]

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “CARS: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.

J. H. Stufflebeam, R. J. Hall, A. C. Eckbreth, “Investigation of the CARS Spectrum of Carbon Monoxide at High Pressure and Temperature,” Air Force Rocket Propulsion Laboratory Technical Report TR-84-042 (1984).

Esherick, P.

R. A. Hill, P. Esherick, A. Owyoung, “High-resolution Stimulated Raman Spectroscopy of O2,” J. Mol. Spectrosc. 100, 119 (1983).
[CrossRef]

Farrow, R. L.

L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on CARS Intensities,” Opt. Lett. 9, 223 (1984).
[CrossRef] [PubMed]

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Comparison between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame,” Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

R. L. Farrow, L. A. Rahn, “Optical Stark Effects in Nonlinear Raman Spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, Eds. (Wiley, New York, 1982), pp. 159–60.

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Crossed-beam,Background-free CARS Measurement in a Methane Diffusion Flame,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 668–69.

R. L. Farrow, L. A. Rahn, “Interpreting CARS Spectra Measured with Multi-mode Nd:YAG Pump Lasers,” to be published in J. Opt. Soc. Am. B.

R. L. Farrow, L. A. Rahn, R. P. Lucht, in Proceedings, Ninth International Conference on Raman Spectroscopy, M. Tsuboi, Ed. (Chemical Society of Japan, Tokyo, 1984), pp. 340–41.These results show that the effect of field statistics appears to be less pronounced for overlapping Q-branch transitions in comparison to isolated lines.

Gilson, T. R.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
[CrossRef]

Goss, L. P.

L. P. Goss, G. L. Switzer, D. D. Trump, “Temperature and Species Concentration in Turbulent Flames by the CARS Technique,” J. Energy 7, 403 (1983).
[CrossRef]

Greenhalgh, D. A.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
[CrossRef]

Guelachvili, G.

G. Guelachvili, “Absolute Wavenumbers and Molecular Constants of the Fundamentals Bands of 12C16O, 12C17O, 12C18O, 13C16O, 13C17O, 13C18O, and of the 2–1 Bands of 12C16O and 13C16O. Around 5 μm, by Fourier Spectroscopy Under Vacuum,” J. Mol. Spectrosc. 75, 251 (1979).
[CrossRef]

Hall, R. J.

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity with and without Nonresonance Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380 (1980).
[CrossRef] [PubMed]

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “CARS: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.

J. H. Stufflebeam, R. J. Hall, A. C. Eckbreth, “Investigation of the CARS Spectrum of Carbon Monoxide at High Pressure and Temperature,” Air Force Rocket Propulsion Laboratory Technical Report TR-84-042 (1984).

Hanson, R. K.

S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

P. L. Varghese, R. K. Hanson, “Collision Width Measurements of CO in Combustion Gases Using a Tunable Diode Laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339 (1981).
[CrossRef]

Hill, R. A.

R. A. Hill, P. Esherick, A. Owyoung, “High-resolution Stimulated Raman Spectroscopy of O2,” J. Mol. Spectrosc. 100, 119 (1983).
[CrossRef]

Hirose, C.

Hou, S.-Y.

T. Lundeen, S.-Y. Hou, J. W. Nibler, “Nonresonant Third Order Susceptibilities for Various Gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

Hurst, W. S.

G. J. Rosasco, W. Lempert, W. S. Hurst, “Line Interference Effects in the Vibrational Q-branch Spectra of N2 and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

G. J. Rosasco, W. S. Hurst, “Measurement of Resonant and Nonresonant Third Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” to be published in Phys. Rev. A00, 000 (1985).

Jennings, D. E.

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” in Astrophys. J. Lett. 291, L15 (1985).
[CrossRef]

Jenny, S. N.

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
[CrossRef]

Kataoka, H.

Klockner, H. W.

H. W. Schrotter, H. W. Klockner, in “Raman Spectroscopy of Gases and Liquids,” A. Weber, Ed. (Springer, New York, 1979), pp. 123–201.
[CrossRef]

Koszkowski, M. L.

L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

Koszykowski, M. L.

L. A. Rahn, A. Owyoung, M. E. Coltrin, M. L. Koszykowski, “The J-dependence of Nitrogen Q-branch Linewidths,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 694–95.

Kramlich, J. C.

P. C. Malte, J. C. Kramlich, “Further Observations of the Effect of Sample Probes on Pollutant Gases Drawn from Flame Zones,” Combust. Sci. Tech. 22, 263 (1980).
[CrossRef]

Lempert, W.

G. J. Rosasco, W. Lempert, W. S. Hurst, “Line Interference Effects in the Vibrational Q-branch Spectra of N2 and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

Lucht, R. P.

L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on CARS Intensities,” Opt. Lett. 9, 223 (1984).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, R. P. Lucht, in Proceedings, Ninth International Conference on Raman Spectroscopy, M. Tsuboi, Ed. (Chemical Society of Japan, Tokyo, 1984), pp. 340–41.These results show that the effect of field statistics appears to be less pronounced for overlapping Q-branch transitions in comparison to isolated lines.

Lundeen, T.

T. Lundeen, S.-Y. Hou, J. W. Nibler, “Nonresonant Third Order Susceptibilities for Various Gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

Maeda, S.

Malte, P. C.

P. C. Malte, J. C. Kramlich, “Further Observations of the Effect of Sample Probes on Pollutant Gases Drawn from Flame Zones,” Combust. Sci. Tech. 22, 263 (1980).
[CrossRef]

Mattern, P. L.

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Comparison between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame,” Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30, 249 (1979).
[CrossRef]

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Crossed-beam,Background-free CARS Measurement in a Methane Diffusion Flame,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 668–69.

Moya, F. S.

F. S. Moya, “Flame Investigation by CARS,” Prog. Astronaut. Aeronaut. 53, 549 (1977).

Nibler, J. W.

T. Lundeen, S.-Y. Hou, J. W. Nibler, “Nonresonant Third Order Susceptibilities for Various Gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

Oudar, J.-L.

J.-L. Oudar, R. W. Smith, Y. R. Shen, “Polarization-SensitiveCARS,” Appl. Phys. Lett. 34, 758 (1979).
[CrossRef]

Owyoung, A.

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” in Astrophys. J. Lett. 291, L15 (1985).
[CrossRef]

R. A. Hill, P. Esherick, A. Owyoung, “High-resolution Stimulated Raman Spectroscopy of O2,” J. Mol. Spectrosc. 100, 119 (1983).
[CrossRef]

A. Owyoung, Sandia National Laboratories, Livermore; private communication.

L. A. Rahn, A. Owyoung, M. E. Coltrin, M. L. Koszykowski, “The J-dependence of Nitrogen Q-branch Linewidths,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 694–95.

Pealat, M.

B. Attal, M. Pealat, J. P. Taran, “CARS Diagnostics of Combustion,” AIAA-80-0282 (1980).

Prior, Y.

Rado, W. G.

W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

Rahn, L. A.

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” in Astrophys. J. Lett. 291, L15 (1985).
[CrossRef]

L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on CARS Intensities,” Opt. Lett. 9, 223 (1984).
[CrossRef] [PubMed]

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Comparison between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame,” Appl. Opt. 21, 3119 (1982).
[CrossRef] [PubMed]

R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30, 249 (1979).
[CrossRef]

L. A. Rahn, Sandia National Laboratories, Livermore; private communication.

L. A. Rahn, A. Owyoung, M. E. Coltrin, M. L. Koszykowski, “The J-dependence of Nitrogen Q-branch Linewidths,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 694–95.

R. L. Farrow, L. A. Rahn, “Interpreting CARS Spectra Measured with Multi-mode Nd:YAG Pump Lasers,” to be published in J. Opt. Soc. Am. B.

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Crossed-beam,Background-free CARS Measurement in a Methane Diffusion Flame,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 668–69.

R. L. Farrow, L. A. Rahn, “Optical Stark Effects in Nonlinear Raman Spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, Eds. (Wiley, New York, 1982), pp. 159–60.

R. L. Farrow, L. A. Rahn, R. P. Lucht, in Proceedings, Ninth International Conference on Raman Spectroscopy, M. Tsuboi, Ed. (Chemical Society of Japan, Tokyo, 1984), pp. 340–41.These results show that the effect of field statistics appears to be less pronounced for overlapping Q-branch transitions in comparison to isolated lines.

Rosasco, G. J.

G. J. Rosasco, W. Lempert, W. S. Hurst, “Line Interference Effects in the Vibrational Q-branch Spectra of N2 and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

G. J. Rosasco, W. S. Hurst, “Measurement of Resonant and Nonresonant Third Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” to be published in Phys. Rev. A00, 000 (1985).

Schoenung, S. M.

S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

Schrotter, H. W.

H. W. Schrotter, H. W. Klockner, in “Raman Spectroscopy of Gases and Liquids,” A. Weber, Ed. (Springer, New York, 1979), pp. 123–201.
[CrossRef]

Shen, Y. R.

J.-L. Oudar, R. W. Smith, Y. R. Shen, “Polarization-SensitiveCARS,” Appl. Phys. Lett. 34, 758 (1979).
[CrossRef]

Shirley, J. A.

Smith, R. W.

J.-L. Oudar, R. W. Smith, Y. R. Shen, “Polarization-SensitiveCARS,” Appl. Phys. Lett. 34, 758 (1979).
[CrossRef]

Stufflebeam, J. H.

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Teller, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
[CrossRef] [PubMed]

J. H. Stufflebeam, R. J. Hall, A. C. Eckbreth, “Investigation of the CARS Spectrum of Carbon Monoxide at High Pressure and Temperature,” Air Force Rocket Propulsion Laboratory Technical Report TR-84-042 (1984).

Switzer, G. L.

L. P. Goss, G. L. Switzer, D. D. Trump, “Temperature and Species Concentration in Turbulent Flames by the CARS Technique,” J. Energy 7, 403 (1983).
[CrossRef]

Taran, J. P.

B. Attal, M. Pealat, J. P. Taran, “CARS Diagnostics of Combustion,” AIAA-80-0282 (1980).

Taran, J.-P. E.

S. A. J. Druet, J.-P. E. Taran, “CARS Spectroscopy,” Prog.Quantum Electron. 7, 1 (1981).
[CrossRef]

Teets, R. E.

Teller, P. A.

Trump, D. D.

L. P. Goss, G. L. Switzer, D. D. Trump, “Temperature and Species Concentration in Turbulent Flames by the CARS Technique,” J. Energy 7, 403 (1983).
[CrossRef]

Varghese, P. L.

P. L. Varghese, R. K. Hanson, “Collision Width Measurements of CO in Combustion Gases Using a Tunable Diode Laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339 (1981).
[CrossRef]

Yuratich, Y. A.

Y. A. Yuratich, “Effects of Laser Linewidth on CARS,” Mol. Phys. 38, 625 (1979).
[CrossRef]

Zych, L. J.

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30, 249 (1979).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967).
[CrossRef]

J.-L. Oudar, R. W. Smith, Y. R. Shen, “Polarization-SensitiveCARS,” Appl. Phys. Lett. 34, 758 (1979).
[CrossRef]

Appl. Spectrosc. (1)

Astrophys. J. Lett. (1)

D. E. Jennings, L. A. Rahn, A. Owyoung, “Laboratory Measurement of the S(9) Pure Rotational Frequency in H2,” in Astrophys. J. Lett. 291, L15 (1985).
[CrossRef]

Chem. Phys. Lett. (1)

G. J. Rosasco, W. Lempert, W. S. Hurst, “Line Interference Effects in the Vibrational Q-branch Spectra of N2 and CO,” Chem. Phys. Lett. 97, 435 (1983).
[CrossRef]

Combust. Flame (2)

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87 (1979).
[CrossRef]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979).
[CrossRef]

Combust. Sci. Tech. (2)

S. M. Schoenung, R. K. Hanson, “CO and Temperature Measurements in a Flat Flame by Laser Absorption Spectroscopy and Probe Techniques,” Combust. Sci. Tech. 24, 227 (1981).
[CrossRef]

P. C. Malte, J. C. Kramlich, “Further Observations of the Effect of Sample Probes on Pollutant Gases Drawn from Flame Zones,” Combust. Sci. Tech. 22, 263 (1980).
[CrossRef]

Combust. Sci. Technol. (1)

A. C. Eckbreth, R. J. Hall, “CARS Concentration Sensitivity with and without Nonresonance Background Suppression,” Combust. Sci. Technol. 25, 175 (1981).
[CrossRef]

J. Chem. Phys. (1)

T. Lundeen, S.-Y. Hou, J. W. Nibler, “Nonresonant Third Order Susceptibilities for Various Gases,” J. Chem. Phys. 79, 6301 (1983).
[CrossRef]

J. Energy (1)

L. P. Goss, G. L. Switzer, D. D. Trump, “Temperature and Species Concentration in Turbulent Flames by the CARS Technique,” J. Energy 7, 403 (1983).
[CrossRef]

J. Mol. Spectrosc. (2)

R. A. Hill, P. Esherick, A. Owyoung, “High-resolution Stimulated Raman Spectroscopy of O2,” J. Mol. Spectrosc. 100, 119 (1983).
[CrossRef]

G. Guelachvili, “Absolute Wavenumbers and Molecular Constants of the Fundamentals Bands of 12C16O, 12C17O, 12C18O, 13C16O, 13C17O, 13C18O, and of the 2–1 Bands of 12C16O and 13C16O. Around 5 μm, by Fourier Spectroscopy Under Vacuum,” J. Mol. Spectrosc. 75, 251 (1979).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

P. L. Varghese, R. K. Hanson, “Collision Width Measurements of CO in Combustion Gases Using a Tunable Diode Laser,” J. Quant. Spectrosc. Radiat. Transfer 26, 339 (1981).
[CrossRef]

J. Raman Spectrosc. (1)

T. R. Gilson, I. R. Beattie, J. D. Black, D. A. Greenhalgh, S. N. Jenny, “Redetermination of Some of the Spectroscopic Constants of the Electronic Ground State of di-Nitrogen 14N2, 14N15N, and 15N2 Using CARS,” J. Raman Spectrosc. 9, 361 (1980).
[CrossRef]

Mol. Phys. (1)

Y. A. Yuratich, “Effects of Laser Linewidth on CARS,” Mol. Phys. 38, 625 (1979).
[CrossRef]

Opt. Commun. (1)

L. A. Rahn, L. J. Zych, P. L. Mattern, “Background-Free CARS Studies of Carbon Monoxide in a Flame,” Opt. Commun. 30, 249 (1979).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (2)

R. L. Farrow, L. A. Rahn, “Optical Stark Splitting of Rotational Raman Transitions,” Phys. Rev. Lett. 48, 395 (1982).
[CrossRef]

L. A. Rahn, R. L. Farrow, M. L. Koszkowski, P. L. Mattern, “Observation of an Optical Stark Effect on Vibrational and Rotational Transitions,” Phys. Rev. Lett. 45, 620 (1980).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

N. J. Bridge, A. D. Buckingham, “Polarization of Laser Light Scattered by Gases,” Proc. R. Soc. London Ser. A 295, 334 (1966).
[CrossRef]

Prog. Astronaut. Aeronaut. (1)

F. S. Moya, “Flame Investigation by CARS,” Prog. Astronaut. Aeronaut. 53, 549 (1977).

Prog.Quantum Electron. (1)

S. A. J. Druet, J.-P. E. Taran, “CARS Spectroscopy,” Prog.Quantum Electron. 7, 1 (1981).
[CrossRef]

Other (15)

L. A. Rahn, A. Owyoung, M. E. Coltrin, M. L. Koszykowski, “The J-dependence of Nitrogen Q-branch Linewidths,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 694–95.

L. A. Rahn, Sandia National Laboratories, Livermore; private communication.

Fully resolved flame spectra from Ref. 18 show little line overlap.

B. Attal, M. Pealat, J. P. Taran, “CARS Diagnostics of Combustion,” AIAA-80-0282 (1980).

See the discussion in Refs. 24 and 25. This correction factor includes a factor of 3 due to different definitions of the nonresonant susceptibility. (We are using the notation of Ref. 9.)

H. W. Schrotter, H. W. Klockner, in “Raman Spectroscopy of Gases and Liquids,” A. Weber, Ed. (Springer, New York, 1979), pp. 123–201.
[CrossRef]

G. J. Rosasco, W. S. Hurst, “Measurement of Resonant and Nonresonant Third Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” to be published in Phys. Rev. A00, 000 (1985).

R. L. Farrow, L. A. Rahn, “Interpreting CARS Spectra Measured with Multi-mode Nd:YAG Pump Lasers,” to be published in J. Opt. Soc. Am. B.

R. L. Farrow, P. L. Mattern, L. A. Rahn, “Crossed-beam,Background-free CARS Measurement in a Methane Diffusion Flame,” in Proceedings, Seventh International Conference on Raman Spectroscopy, W. F. Murphy, Ed. (North-Holland, New York, 1980), pp. 668–69.

R. L. Farrow, L. A. Rahn, “Optical Stark Effects in Nonlinear Raman Spectroscopy,” in Raman Spectroscopy: Linear and Nonlinear, J. Lascombe, P. V. Huong, Eds. (Wiley, New York, 1982), pp. 159–60.

R. J. Hall, A. C. Eckbreth, “CARS: Application to Combustion Diagnostics,” in Laser Applications, Vol. 5, J. F. Ready, R. K. Erf, Eds. (Academic, New York, 1984), pp. 213–309.

A. Owyoung, Sandia National Laboratories, Livermore; private communication.

J. H. Stufflebeam, R. J. Hall, A. C. Eckbreth, “Investigation of the CARS Spectrum of Carbon Monoxide at High Pressure and Temperature,” Air Force Rocket Propulsion Laboratory Technical Report TR-84-042 (1984).

R. L. Farrow, L. A. Rahn, R. P. Lucht, in Proceedings, Ninth International Conference on Raman Spectroscopy, M. Tsuboi, Ed. (Chemical Society of Japan, Tokyo, 1984), pp. 340–41.These results show that the effect of field statistics appears to be less pronounced for overlapping Q-branch transitions in comparison to isolated lines.

The dequil program was modified by R. J. Kee, Sandia National Laboratories, from the program stanjan, developed by W. C. Reynolds, Stanford University.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental diagram of two-channel background-normalized CARS experiment.

Fig. 2
Fig. 2

Resonant foreground (a), nonresonant background (b), and background-normalized (c) CARS spectra of the collisionally narrowed Q-branch of 0.04 mole fraction CO in Ar at 10 atm obtained by stepping the probe laser frequency. Signals were measured after each step using a single laser pulse. Reproducibility at the peak was ±2%. The square root of the intensity is plotted.

Fig. 3
Fig. 3

Measurements of temperature (squares) and nonresonant susceptibility (circles) measured along the center line of a rich (ϕ = 1.32) methane/air flat flame. The nonresonant susceptibility magnitude is relative to that of N2. An × on the left ordinate indicates the susceptibility calculated from reported values2427 for the input gases. Solid lines are smooth curves drawn through the data points.

Fig. 4
Fig. 4

Measurements of N2 concentrations along the center line of the flame based on background-normalized CARS spectra of O-branch transitions. Triangles indicate measurements obtained using a total pump intensity of <30 GW/cm2. Squares show data measured with excessive pump intensity, 45 mJ energy, resulting in 140 GW/ cm2, and illustrate the effects of Stark broadening. Circles represent data analyzed using a more efficient but less rigorous convolution theory33 to account for the pump laser line shape. The theory of Kataoka et al.31 and of Teets32 was used to analyze the other data.

Fig. 5
Fig. 5

Stark broadening of N2 O-branch transitions and its effect on inferred mole fraction concentrations (denoted by n). Spectra are background-normalized to the nonresonant CARS signal so peak intensities should be independent of pump laser power. The square root of the signal ratio is plotted.

Fig. 6
Fig. 6

Calculated Raman spectrum of the N2 O(19) transition for various incident optical intensities. Vertical lines indicate m-dependent sublevels of the rotational transition.

Fig. 7
Fig. 7

Experimental CARS foreground (a), background (c), and ratio (e) spectra of the CO Q-branch region measured 20 mm above the burner surface. (Ratio is the foreground divided by the background.) Calculated CARS foreground (b), background (d), and ratio (f) spectra. Temperature (obtained from separate N2 spectra) was 1750 K in the calculations. We used CO, H2, and N2 mole fractions of 0.062, 0.03, and 0.66, respectively, for the calculations. The etalon was removed from the dye laser resulting in a linewidth of 0.35 cm−1 to permit long scans.

Fig. 8
Fig. 8

CO concentration profile (circles) obtained from data such as those shown in Fig. 7. Squares are temperatures reproduced from Fig. 2. The diamond indicates the CO concentration measured by IR laser absorption in flame gases extracted at this height. The cross symbol shows the result of a thermodynamic equilibrium calculation for the postflame gases.

Fig. 9
Fig. 9

Experimental (solid line) and calculated spectrum (broken line) of the CO bandhead region near the outer diffusion flame surrounding the rich flat flame. Here the probe linewidth was 0.1 cm−1. Best fit CO mole fraction was 0.0035. From these and other data we estimate a detectivity of 1000 ppm for CO at 1900 K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Γ ( J , P , T ) = ( A T 0.77 J B T 1.31 ) P ,

Metrics