Abstract

A simple and reliable dye laser emitting two 5-pm lines alternately in successive pulses in collinear beams is described. The proposed laser schemes use a reflecting interference wedge (RIW) as the spectral selector. The two emitted wavelengths produced with the same polarization are determined by 2 orders of the RIW and show high spectral purity and stability. Applications to DIAL measurements for SO2 and NO2 are discussed.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. N Nenchev, Y. H. Meyer, “Two-wavelength Dye Laser Operation Using a Reflecting Fizeau Interferometer,” Appl. Phys. 247 (1981);Y. H. Meyer, “Fringe Shape with an Interference Wedge,” J. Opt. Soc. Am. 71, 1255 (1981).
    [CrossRef]
  2. Y. H. Meyer, M. N Nenchev, “Single Mode Dye Laser with a Double Action Fizeau Interferometer,” Opt. Lett. 6, 119 (1981).
    [CrossRef] [PubMed]
  3. M. N. Nenchev, Y. H. Meyer, “High Spectral Purity Narrow Line Dye Laser Using a Reflecting Interference Wedge,” Proc. Soc. Photo-Opt. Instrum. Eng. 473, 181 (1984);M. M. Martin, Y. H. Meyer, “Scanning a 1-GHz Pulsed Dye Laser Line with a Piezoelectric Reflecting Wedge,” Appl. Opt. 24, 682 (1985).
    [CrossRef] [PubMed]
  4. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
    [CrossRef]
  5. H. Inomata, T. Igarachi, “Study of Laser Radar System Using the Differential Absorption Method for Detection of Air Pollutants,” J. Appl. Phys. 14, 1751 (1975).
    [CrossRef]
  6. E. V. Browell et al., “NASA Multipurpose Airborne DIAL System and Measurements of Ozone and Aerosol Profiles,” Appl. Opt. 22, 522 (1983).
    [CrossRef] [PubMed]
  7. A.-L. Egeback, K. A. Fredriksson, H. M. Hertz, “DIAL Techniques for the Control of Sulfur Dioxide Emissions,” Appl. Opt. 23, 722 (1984).
    [CrossRef] [PubMed]
  8. D. J. Brassington, R. C. Felton, B. W. Jolliffe, B. R. Marx, J. T. M. Moncrieff, W. R. C. Rowley, P. T. Woods, “Errors in Spectroscopic Measurements of SO2 due to Nonexponential Absorption of Laser Radiation with Application to the Remote Monitoring of Atmospheric Pollutants,” Appl. Opt. 23, 469 (1984).
    [CrossRef] [PubMed]
  9. R. T. Thompson, J. M. Holl, W. R. Wade, “Measurements of SO2 Absorption Coefficients Using a Tunable Dye Laser,” J. Appl. Phys. 46, 3040 (1975).
    [CrossRef]
  10. D. J. Brassington, “Sulfur Dioxide Absorption Cross-Section Measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774 (1981).
    [CrossRef] [PubMed]
  11. B. R. Marx, K. P. Birch, R. C. Felton, B. W. Jolliffe, W. R. C. Rowley, P. T. Woods, “High Resolution Spectroscopy of SO2 using a Frequency Doubled Continuous Wave Dye Laser,” Opt. Comm. 33, 287 (1980).
    [CrossRef]

1984

1983

1981

M. N Nenchev, Y. H. Meyer, “Two-wavelength Dye Laser Operation Using a Reflecting Fizeau Interferometer,” Appl. Phys. 247 (1981);Y. H. Meyer, “Fringe Shape with an Interference Wedge,” J. Opt. Soc. Am. 71, 1255 (1981).
[CrossRef]

Y. H. Meyer, M. N Nenchev, “Single Mode Dye Laser with a Double Action Fizeau Interferometer,” Opt. Lett. 6, 119 (1981).
[CrossRef] [PubMed]

D. J. Brassington, “Sulfur Dioxide Absorption Cross-Section Measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774 (1981).
[CrossRef] [PubMed]

1980

B. R. Marx, K. P. Birch, R. C. Felton, B. W. Jolliffe, W. R. C. Rowley, P. T. Woods, “High Resolution Spectroscopy of SO2 using a Frequency Doubled Continuous Wave Dye Laser,” Opt. Comm. 33, 287 (1980).
[CrossRef]

1975

H. Inomata, T. Igarachi, “Study of Laser Radar System Using the Differential Absorption Method for Detection of Air Pollutants,” J. Appl. Phys. 14, 1751 (1975).
[CrossRef]

R. T. Thompson, J. M. Holl, W. R. Wade, “Measurements of SO2 Absorption Coefficients Using a Tunable Dye Laser,” J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

1974

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Birch, K. P.

B. R. Marx, K. P. Birch, R. C. Felton, B. W. Jolliffe, W. R. C. Rowley, P. T. Woods, “High Resolution Spectroscopy of SO2 using a Frequency Doubled Continuous Wave Dye Laser,” Opt. Comm. 33, 287 (1980).
[CrossRef]

Brassington, D. J.

Browell, E. V.

Egeback, A.-L.

Felton, R. C.

Fredriksson, K. A.

Grant, W. B.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hake, R. D.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hertz, H. M.

Holl, J. M.

R. T. Thompson, J. M. Holl, W. R. Wade, “Measurements of SO2 Absorption Coefficients Using a Tunable Dye Laser,” J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Igarachi, T.

H. Inomata, T. Igarachi, “Study of Laser Radar System Using the Differential Absorption Method for Detection of Air Pollutants,” J. Appl. Phys. 14, 1751 (1975).
[CrossRef]

Inomata, H.

H. Inomata, T. Igarachi, “Study of Laser Radar System Using the Differential Absorption Method for Detection of Air Pollutants,” J. Appl. Phys. 14, 1751 (1975).
[CrossRef]

Jolliffe, B. W.

Liston, E. M.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Marx, B. R.

Meyer, Y. H.

M. N. Nenchev, Y. H. Meyer, “High Spectral Purity Narrow Line Dye Laser Using a Reflecting Interference Wedge,” Proc. Soc. Photo-Opt. Instrum. Eng. 473, 181 (1984);M. M. Martin, Y. H. Meyer, “Scanning a 1-GHz Pulsed Dye Laser Line with a Piezoelectric Reflecting Wedge,” Appl. Opt. 24, 682 (1985).
[CrossRef] [PubMed]

M. N Nenchev, Y. H. Meyer, “Two-wavelength Dye Laser Operation Using a Reflecting Fizeau Interferometer,” Appl. Phys. 247 (1981);Y. H. Meyer, “Fringe Shape with an Interference Wedge,” J. Opt. Soc. Am. 71, 1255 (1981).
[CrossRef]

Y. H. Meyer, M. N Nenchev, “Single Mode Dye Laser with a Double Action Fizeau Interferometer,” Opt. Lett. 6, 119 (1981).
[CrossRef] [PubMed]

Moncrieff, J. T. M.

Nenchev, M. N

M. N Nenchev, Y. H. Meyer, “Two-wavelength Dye Laser Operation Using a Reflecting Fizeau Interferometer,” Appl. Phys. 247 (1981);Y. H. Meyer, “Fringe Shape with an Interference Wedge,” J. Opt. Soc. Am. 71, 1255 (1981).
[CrossRef]

Y. H. Meyer, M. N Nenchev, “Single Mode Dye Laser with a Double Action Fizeau Interferometer,” Opt. Lett. 6, 119 (1981).
[CrossRef] [PubMed]

Nenchev, M. N.

M. N. Nenchev, Y. H. Meyer, “High Spectral Purity Narrow Line Dye Laser Using a Reflecting Interference Wedge,” Proc. Soc. Photo-Opt. Instrum. Eng. 473, 181 (1984);M. M. Martin, Y. H. Meyer, “Scanning a 1-GHz Pulsed Dye Laser Line with a Piezoelectric Reflecting Wedge,” Appl. Opt. 24, 682 (1985).
[CrossRef] [PubMed]

Proctor, E. K.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Robbins, R. C.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Rowley, W. R. C.

Thompson, R. T.

R. T. Thompson, J. M. Holl, W. R. Wade, “Measurements of SO2 Absorption Coefficients Using a Tunable Dye Laser,” J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Wade, W. R.

R. T. Thompson, J. M. Holl, W. R. Wade, “Measurements of SO2 Absorption Coefficients Using a Tunable Dye Laser,” J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Woods, P. T.

Appl. Opt.

Appl. Phys.

M. N Nenchev, Y. H. Meyer, “Two-wavelength Dye Laser Operation Using a Reflecting Fizeau Interferometer,” Appl. Phys. 247 (1981);Y. H. Meyer, “Fringe Shape with an Interference Wedge,” J. Opt. Soc. Am. 71, 1255 (1981).
[CrossRef]

Appl. Phys. Lett.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

J. Appl. Phys.

H. Inomata, T. Igarachi, “Study of Laser Radar System Using the Differential Absorption Method for Detection of Air Pollutants,” J. Appl. Phys. 14, 1751 (1975).
[CrossRef]

R. T. Thompson, J. M. Holl, W. R. Wade, “Measurements of SO2 Absorption Coefficients Using a Tunable Dye Laser,” J. Appl. Phys. 46, 3040 (1975).
[CrossRef]

Opt. Comm.

B. R. Marx, K. P. Birch, R. C. Felton, B. W. Jolliffe, W. R. C. Rowley, P. T. Woods, “High Resolution Spectroscopy of SO2 using a Frequency Doubled Continuous Wave Dye Laser,” Opt. Comm. 33, 287 (1980).
[CrossRef]

Opt. Lett.

Proc. Soc. Photo-Opt. Instrum. Eng.

M. N. Nenchev, Y. H. Meyer, “High Spectral Purity Narrow Line Dye Laser Using a Reflecting Interference Wedge,” Proc. Soc. Photo-Opt. Instrum. Eng. 473, 181 (1984);M. M. Martin, Y. H. Meyer, “Scanning a 1-GHz Pulsed Dye Laser Line with a Piezoelectric Reflecting Wedge,” Appl. Opt. 24, 682 (1985).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dye laser cavity for production of two lines of alternate wavelength: RIW, 200-μm reflecting interference wedge; S, synchronized scanner; D, 0.4-mm diaphragm; L, cylindrical lens: (a) using a glass galvoplate switch GP and a 10-μm transmission wedge TW; (b) using a rotating grating switch G and a beam expander glass prism P.

Fig 2
Fig 2

Laser output spectra (a) from a cavity with a wedge RIW and a mirror M only; (b) from cavities as shown in Fig. 1. Two different positions of the scanner select two different orders of the RIW. (The linewidths are instrumental.)

Fig. 3
Fig. 3

Laser system scheme: Osc, two-wavelength oscillator as shown in Fig. 1; L, cylindrical lens.

Metrics