Abstract

A practical range-resolved differential absorption and scattering lidar has been optimized for maximum range and sensitivity. Compression of the signal amplitude dynamics, quasi-simultaneous dual-pulse operation, the processing sequence of the primary signals, a method of alignment mismatch compensation, and the effects of temporal and spatial averaging are discussed. Experimental verifications with a four-laser system for NO2 and SO2 are presented. For NO2 a range of up to 6 km at a sensitivity of 10 ppb and for SO2 a range up to 3 km at 15-ppb sensitivity have been accomplished.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. W. Rothe, U. Brinkmann, H. Walther, “Remote Measurement of NO2 Emission from a Chemical Factory by the Differential Absorption Technique,” Appl. Phys. 4, 181 (1974).
    [CrossRef]
  2. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
    [CrossRef]
  3. J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 128.
  4. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile Lidar System for Environmental Probing,” Appl. Opt. 20, 4181 (1981).
    [CrossRef] [PubMed]
  5. R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), p. 76.
  6. E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols With an Airborne DIAL System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 138.
  7. G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P. H. Flamant, “Ozone and Water Vapor Monitoring Using a Ground-Based Lidar System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 223.
  8. J. Harms, “Lidar Return Signals for Coaxial and Noncoaxial Systems with Central Obstruction,” Appl. Opt. 18, 1559 (1979).
    [CrossRef] [PubMed]
  9. N. Menyuk, D. K. Killinger, “Temporal Correlation Measurements of Pulsed Dual CO2 Lidar Returns,” Opt. Lett. 6, 301 (1981).
    [CrossRef] [PubMed]
  10. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error Reduction in Laser Remote Sensing: Combined Effects of Cross Correlation and Signal Averaging,” Appl. Opt. 24, 118 (1985).
    [CrossRef] [PubMed]

1985

1981

1979

1974

K. W. Rothe, U. Brinkmann, H. Walther, “Remote Measurement of NO2 Emission from a Chemical Factory by the Differential Absorption Technique,” Appl. Phys. 4, 181 (1974).
[CrossRef]

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Brinkmann, U.

K. W. Rothe, U. Brinkmann, H. Walther, “Remote Measurement of NO2 Emission from a Chemical Factory by the Differential Absorption Technique,” Appl. Phys. 4, 181 (1974).
[CrossRef]

Browell, E. V.

E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols With an Airborne DIAL System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 138.

Cahen, C.

G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P. H. Flamant, “Ozone and Water Vapor Monitoring Using a Ground-Based Lidar System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 223.

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), p. 76.

Flamant, P. H.

G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P. H. Flamant, “Ozone and Water Vapor Monitoring Using a Ground-Based Lidar System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 223.

Fletcher, L. D.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 128.

Fredriksson, K.

Galle, B.

Grant, W. B.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Hake, R. D.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Harms, J.

Hawley, J. G.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 128.

Killinger, D. K.

Lefrère, J.

G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P. H. Flamant, “Ozone and Water Vapor Monitoring Using a Ground-Based Lidar System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 223.

Liston, E. M.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Mégie, G.

G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P. H. Flamant, “Ozone and Water Vapor Monitoring Using a Ground-Based Lidar System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 223.

Menyuk, C. R.

Menyuk, N.

Nyström, K.

Pelon, J.

G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P. H. Flamant, “Ozone and Water Vapor Monitoring Using a Ground-Based Lidar System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 223.

Proctor, E. K.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Robbins, R. C.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Rothe, K. W.

K. W. Rothe, U. Brinkmann, H. Walther, “Remote Measurement of NO2 Emission from a Chemical Factory by the Differential Absorption Technique,” Appl. Phys. 4, 181 (1974).
[CrossRef]

Russell, P. B.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), p. 76.

Svanberg, S.

Wallace, G. F.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 128.

Walther, H.

K. W. Rothe, U. Brinkmann, H. Walther, “Remote Measurement of NO2 Emission from a Chemical Factory by the Differential Absorption Technique,” Appl. Phys. 4, 181 (1974).
[CrossRef]

Appl. Opt.

Appl. Phys.

K. W. Rothe, U. Brinkmann, H. Walther, “Remote Measurement of NO2 Emission from a Chemical Factory by the Differential Absorption Technique,” Appl. Phys. 4, 181 (1974).
[CrossRef]

Appl. Phys. Lett.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, “Calibrated Remote Measurement of NO2 Using the Differential-Absorption Backscatter Technique,” Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Opt. Lett.

Other

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 128.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, Berlin, 1976), p. 76.

E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols With an Airborne DIAL System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 138.

G. Mégie, J. Pelon, J. Lefrère, C. Cahen, P. H. Flamant, “Ozone and Water Vapor Monitoring Using a Ground-Based Lidar System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Ed. (Springer, Berlin, 1983), p. 223.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Pairs of measurement M and reference R return signals (top) taken at 2-sec intervals for the measurement of SO2 in a plume. Bottom: calculation of concentrations using different combinations of signals: (a) measurement signal 1 with reference signal 2 and vice versa; (b) correct determination of the concentration from shot 2; (c) measurement signal 2 with reference signal 3 and vice versa.

Fig. 2
Fig. 2

Concentration of SO2 in the plume of a plant for sulfuric acid production. Thirty dual-pulse shots: (a) correct event-by-event treatment of signal pulse pairs; (b) concentration calculation by the summation of signals first method.

Fig. 3
Fig. 3

Compensation of alignment mismatch evaluated from return signals with both lasers tuned to wavelength λoff. (a) Return signals, one signal drawn on a 10% reduced scale. (b) Zero concentration of NO2 with 50-m Gaussian averaging (structured curve) and 300-m linear averaging (histogram).

Fig. 4
Fig. 4

Zero concentration of NO2 vs distance and standard deviation σ calculated from the data between 600 and 2400 m for different numbers n of dual pulses.

Fig. 5
Fig. 5

Zero concentration of NO2 vs distance and standard deviation σ (600–2400 m) for different output pulse energies E.

Fig. 6
Fig. 6

Standard deviation σ of an NO2 zero concentration measurement as a function of width ΔR of the spatial averaging interval. The least-squares fit of the measured data shows excellent agreement with the theoretical result of Eq. (10).

Fig. 7
Fig. 7

Measurement of NO2 over the city of Hamburg 30 Aug. 1983.

Fig. 8
Fig. 8

Measurement of SO2 over the city of Hamburg 23 Sept. 1983.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

P ( R ) = P ̅ c τ 2 A R 2 β ( R ) exp [ 2 0 R α ( r ) d r ] ,
P on = c τ 2 A R 2 { i P ̅ on , i β i ( R ) × exp [ 2 0 R ( α i ( r ) + N i ( r ) σ on ) d r ] } ,
P off = c τ 2 A R 2 { i P ̅ off , i β i ( R ) × exp [ 2 0 R ( α i ( r ) + N i ( r ) σ off ) d r ] } .
P on = c τ 2 A R 2 exp [ 2 N ( r ) σ on d r ] × { i P ̅ on , i β i ( R ) exp [ 2 0 R α ( r ) d r ] }
ln P on P off = 2 0 R N ( r ) ( σ on σ off ) d r + ln i P ̅ on , i β i ( R ) exp [ 2 0 R α i ( r ) d r ] ln i P ̅ off , i β i ( R ) exp [ 2 0 R α i ( r ) d r ] , and
d d R ln P on P off = 2 ( σ on σ off ) N ( R ) + d d R { ln i P ̅ on , i β i ( R ) exp [ 2 0 R α i ( r ) d r ] ln i P ̅ off , i β i ( R ) exp [ 2 0 R α i ( r ) d r ] } .
α on = α atm + N σ on
α off = α atm + N σ off ,
N = 1 2 Δ σ Δ R ln P on ( R + Δ R ) / P on ( R ) P off ( R + Δ R ) / P off ( R ) ,
σ N 2 = 4 ( N P ) 2 σ P 2 = ( 1 Δ σ Δ R ) 2 ( σ P P ) 2 1 ( Δ σ ) 2 ( Δ R ) 2 P ,

Metrics