Abstract

The coherence of a single-mode laser diode, under high-speed pulsed modulation, is limited by instabilities in the lasing wavelength arising from transient phenomena in the junction region of the laser. This paper reports the results of an experiment to characterize the effects of these modal instabilities on the temporal coherence of pulsed laser diodes. The primary intent of the experiment was measurement of the cumulative effect of the modal instabilities on the fringe visibility in interferometric time integrating optical processors. A conclusion of this study is that commercially available laser diodes can be used as pulsed light sources in interferometric applications in which the pulse width of the laser is long compared to its characteristic coherence time constant and short compared to its characteristic thermal time constant. Furthermore, the interpulse modal instability can be minimized by prudent choice of operating conditions.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Botez, G. Herskowitz, “Components for Optical Communications Systems: A Review,” Proc. IEEE 68, No. 6 (June1980).
    [Crossref]
  2. J. G Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real Time Optical Correlation with Solid State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 281 (1980).
  3. D. Psaltis, “Optical Image Correlation Using Acoustooptic and Charge-Coupled Devices,” Appl. Opt., 21, 491, (1982).
    [Crossref] [PubMed]
  4. Y. A. Bykovskii et al., “Method for Investigating Thermal Condition in and Spectral Characteristics of a Semiconductor Laser by Means of a Fabry-Perot Resonator,” Sov. Phys. Semicond., 5, 435 (1971).
  5. J. Butler, “The Effect of Junction Heating on Laser Linearity and Harmonic Distortion,” in Topics in Applied Physics, Vol. 34 (Springer-Verlag, Berlin, 1980), Chap. 8.
    [Crossref]
  6. Y. A. Bykovskii et al., “Coherence of the Radiation of a Pulsed Single Mode Injection Semiconductor Laser,” Sov. Phys. Dokl., 17, 359 (1972).
  7. P. Melman, W. J. Calsen, “Interferometric Measurement of Thermal Coherence and Time-Varying Longitudinal-Mode Wavelengths in GaAs Diode Lasers,” in Technical Digest, Conference on Lasers and Electro-optics (Optical Society of America, Washington D. C, 1981), paper WS4.
  8. M. Haney, D. Psaltis, “Coherence Properties of Pulsed Laser Diodes,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 197 (1983).
  9. A Yariv, Quantum Electronics (Wiley, New York, 1975).
  10. Hitachi Laser Diode Application Manual.
  11. K. Y. Lau, C. Harder, A. Yariv, “Longitudinal Mode Spectrum of Semiconductor Lasers Under High-speed Modulation,” IEEE J. Quantum Electron. QE-20, No. 1, 71 (Jan.1984).

1984 (1)

K. Y. Lau, C. Harder, A. Yariv, “Longitudinal Mode Spectrum of Semiconductor Lasers Under High-speed Modulation,” IEEE J. Quantum Electron. QE-20, No. 1, 71 (Jan.1984).

1983 (1)

M. Haney, D. Psaltis, “Coherence Properties of Pulsed Laser Diodes,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 197 (1983).

1982 (1)

1980 (2)

D. Botez, G. Herskowitz, “Components for Optical Communications Systems: A Review,” Proc. IEEE 68, No. 6 (June1980).
[Crossref]

J. G Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real Time Optical Correlation with Solid State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 281 (1980).

1972 (1)

Y. A. Bykovskii et al., “Coherence of the Radiation of a Pulsed Single Mode Injection Semiconductor Laser,” Sov. Phys. Dokl., 17, 359 (1972).

1971 (1)

Y. A. Bykovskii et al., “Method for Investigating Thermal Condition in and Spectral Characteristics of a Semiconductor Laser by Means of a Fabry-Perot Resonator,” Sov. Phys. Semicond., 5, 435 (1971).

Botez, D.

D. Botez, G. Herskowitz, “Components for Optical Communications Systems: A Review,” Proc. IEEE 68, No. 6 (June1980).
[Crossref]

Butler, J.

J. Butler, “The Effect of Junction Heating on Laser Linearity and Harmonic Distortion,” in Topics in Applied Physics, Vol. 34 (Springer-Verlag, Berlin, 1980), Chap. 8.
[Crossref]

Bykovskii, Y. A.

Y. A. Bykovskii et al., “Coherence of the Radiation of a Pulsed Single Mode Injection Semiconductor Laser,” Sov. Phys. Dokl., 17, 359 (1972).

Y. A. Bykovskii et al., “Method for Investigating Thermal Condition in and Spectral Characteristics of a Semiconductor Laser by Means of a Fabry-Perot Resonator,” Sov. Phys. Semicond., 5, 435 (1971).

Calsen, W. J.

P. Melman, W. J. Calsen, “Interferometric Measurement of Thermal Coherence and Time-Varying Longitudinal-Mode Wavelengths in GaAs Diode Lasers,” in Technical Digest, Conference on Lasers and Electro-optics (Optical Society of America, Washington D. C, 1981), paper WS4.

Christensen, C. R.

J. G Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real Time Optical Correlation with Solid State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 281 (1980).

Duthie, J. G

J. G Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real Time Optical Correlation with Solid State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 281 (1980).

Haney, M.

M. Haney, D. Psaltis, “Coherence Properties of Pulsed Laser Diodes,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 197 (1983).

Harder, C.

K. Y. Lau, C. Harder, A. Yariv, “Longitudinal Mode Spectrum of Semiconductor Lasers Under High-speed Modulation,” IEEE J. Quantum Electron. QE-20, No. 1, 71 (Jan.1984).

Herskowitz, G.

D. Botez, G. Herskowitz, “Components for Optical Communications Systems: A Review,” Proc. IEEE 68, No. 6 (June1980).
[Crossref]

Lau, K. Y.

K. Y. Lau, C. Harder, A. Yariv, “Longitudinal Mode Spectrum of Semiconductor Lasers Under High-speed Modulation,” IEEE J. Quantum Electron. QE-20, No. 1, 71 (Jan.1984).

McKenzie, R. D.

J. G Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real Time Optical Correlation with Solid State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 281 (1980).

Melman, P.

P. Melman, W. J. Calsen, “Interferometric Measurement of Thermal Coherence and Time-Varying Longitudinal-Mode Wavelengths in GaAs Diode Lasers,” in Technical Digest, Conference on Lasers and Electro-optics (Optical Society of America, Washington D. C, 1981), paper WS4.

Psaltis, D.

M. Haney, D. Psaltis, “Coherence Properties of Pulsed Laser Diodes,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 197 (1983).

D. Psaltis, “Optical Image Correlation Using Acoustooptic and Charge-Coupled Devices,” Appl. Opt., 21, 491, (1982).
[Crossref] [PubMed]

Upatnieks, J.

J. G Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real Time Optical Correlation with Solid State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 281 (1980).

Yariv, A

A Yariv, Quantum Electronics (Wiley, New York, 1975).

Yariv, A.

K. Y. Lau, C. Harder, A. Yariv, “Longitudinal Mode Spectrum of Semiconductor Lasers Under High-speed Modulation,” IEEE J. Quantum Electron. QE-20, No. 1, 71 (Jan.1984).

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

K. Y. Lau, C. Harder, A. Yariv, “Longitudinal Mode Spectrum of Semiconductor Lasers Under High-speed Modulation,” IEEE J. Quantum Electron. QE-20, No. 1, 71 (Jan.1984).

Proc. IEEE (1)

D. Botez, G. Herskowitz, “Components for Optical Communications Systems: A Review,” Proc. IEEE 68, No. 6 (June1980).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. G Duthie, J. Upatnieks, C. R. Christensen, R. D. McKenzie, “Real Time Optical Correlation with Solid State Sources,” Proc. Soc. Photo-Opt. Instrum. Eng. 231, 281 (1980).

M. Haney, D. Psaltis, “Coherence Properties of Pulsed Laser Diodes,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 197 (1983).

Sov. Phys. Dokl. (1)

Y. A. Bykovskii et al., “Coherence of the Radiation of a Pulsed Single Mode Injection Semiconductor Laser,” Sov. Phys. Dokl., 17, 359 (1972).

Sov. Phys. Semicond. (1)

Y. A. Bykovskii et al., “Method for Investigating Thermal Condition in and Spectral Characteristics of a Semiconductor Laser by Means of a Fabry-Perot Resonator,” Sov. Phys. Semicond., 5, 435 (1971).

Other (4)

J. Butler, “The Effect of Junction Heating on Laser Linearity and Harmonic Distortion,” in Topics in Applied Physics, Vol. 34 (Springer-Verlag, Berlin, 1980), Chap. 8.
[Crossref]

P. Melman, W. J. Calsen, “Interferometric Measurement of Thermal Coherence and Time-Varying Longitudinal-Mode Wavelengths in GaAs Diode Lasers,” in Technical Digest, Conference on Lasers and Electro-optics (Optical Society of America, Washington D. C, 1981), paper WS4.

A Yariv, Quantum Electronics (Wiley, New York, 1975).

Hitachi Laser Diode Application Manual.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Laser diode temporal coherence measurement setup.

Fig. 2
Fig. 2

Coherence time measurement, 1 nsec/div.

Fig. 3
Fig. 3

Modal instability induced by junction heating during the pulse: (a) peak power = 15 mW, bias = 0, 200 nsec/div; (b) peak power 8 mW, bias = 0, 200 nsec/div; (c) peak power = 15 mW, bias = 50 mA, 200 nsec/div; (d) peak power = 8 mW, bias = 50 mA, 200 nsec/div.

Fig. 4
Fig. 4

Rise in junction temperature for different operating conditions.

Fig. 5
Fig. 5

Intrapulse mode hop, peak power = 20 mW, bias = 0,100 nsec/div.

Fig. 6
Fig. 6

Interpulse mode hopping.

Fig. 7
Fig. 7

Laser drive pulses: (a) 10-nsec rise time; (b) 80-nsec rise time.

Fig. 8
Fig. 8

Fringe pattern generated by 10,000 interferometrically detected LD pulses.

Fig. 9
Fig. 9

Measurements of the modulus of the coherence function for 10,000 time integrated pulses.

Fig. 10
Fig. 10

Theoretical modulus of the coherence function.

Fig. 11
Fig. 11

Calculated effect of interpulse mode hopping on the modulus of the coherence function.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 nL / q ,
λ = d λ / dT = 2 / q ( ndL / dT + Ldn / dT ) .
Δ β = 2 π d / λ ,
d ( Δ β ) / d λ = 2 π d / λ 2 .
d ( Δ β ) / dT _ 2 π d λ / λ 2 .
Δ T ( t ) = T 0 [ 1 exp ( t / τ ) ] ,
Δ β ( t ) = 2 π dT 0 λ [ 1 exp ( t / τ ) ] / λ 2 .
E = exp [ j ω ( t ) t ] + exp [ j ω ( t d / c ) ( t d / c ) ] ,
λ ( t ) = λ i + T 0 λ [ 1 exp ( t / τ ) ] ,
ω ( t ) = 2 π c / λ ( t ) _ ( 2 π c / λ i ) { 1 λ T 0 [ 1 exp ( t / τ ) ] / λ i }
G ( d ) _ exp [ j ω ( t ) t ] exp { j [ ω ( t ) ( t d / c ) ] } ,
G ( d ) = 1 / p 0 p exp { j [ ω ( t ) d / c ] } dt .
G ( d ) = sinc ( dc 1 P ) exp [ j 2 π ( d / λ i dc 1 P / 2 ) ] ,
V = | sinc ( dc 1 P ) | .
G 2 ( d ) = E ( exp { j ω ( t ) t } exp { j [ ω ( t ) ( t d / c ) ] } ) .
G 2 ( d ) = exp [ j ( ω 1 , i d / c π dc 1 P ) ] sinc ( dc 1 P ) × { p + ( 1 p ) exp [ j ( δ ω ) d / c ] } ,
V 2 = | sinc ( c 1 P ) | { 2 p 2 2 p + 1 + 2 p ( 1 p ) cos [ ( δ ω ) d / c ] } 1 / 2 .

Metrics