Abstract

The conical x-ray imaging mirror represents the long focal length limit of a Wolter type I grazing incidence mirror, in which the curved surfaces have been replaced by simple cones. When many thin-walled cones are nested, such a mirror affords the relatively high aperture filling factor needed for telescopes well suited to broadband x-ray astonomy. A conical mirror also features a constant spatial resolution across the field of view and can be designed to have an arbitrarily high intrinsic spatial resolution. We describe the spatial resolution and filling factor of conical optics as a function of various design parameters as characterized using a Monte Carlo ray tracing procedure.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
    [CrossRef]
  2. H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen,” Ann. Phys. 10, 94 (1952).
    [CrossRef]
  3. L. P. VanSpeybroeck, R. C. Chase, “Design Parameters of Paraboloid–Hyperboloid Telescopes for X-ray Astronomy,” Appl. Opt. 11, 440(1972).
    [CrossRef] [PubMed]
  4. P. Kirkpatrick, A. V. Baez, “Formation of Optical Images by X-Rays,” J. Opt. Soc. Am. 38, 766 (1948).
    [CrossRef] [PubMed]
  5. L. P. VanSpeybroeck, R. C. Chase, T. F. Zehnpfennig, “Orthogonal Mirror Telescopes for X-ray Astronomy,” Appl. Opt. 10, 945 (1971).
    [CrossRef] [PubMed]
  6. P. J. Serlemitsos, R. Petre, C. Glasser, F. Birsa, “Broad Band X-ray Astronomical Spectroscopy,” IEEE Trans. Nucl. Sci. NS-31, 786 (1984).
    [CrossRef]
  7. M. V. Zombeck, “Advanced X-ray Astrophysics Facility (AXAF)—Performance Requirements and Design Considerations,” Proc. Soc. Photo-Opt. Instrum. Eng. 84, 50 (1979).
  8. L. P. VanSpeybroeck, “Einstein Observatory (HEAO-B) Mirror Design and Performance,” Proc. Soc. Photo-Opt. Instrum. Eng. 184, 2 (1979).

1984 (1)

P. J. Serlemitsos, R. Petre, C. Glasser, F. Birsa, “Broad Band X-ray Astronomical Spectroscopy,” IEEE Trans. Nucl. Sci. NS-31, 786 (1984).
[CrossRef]

1979 (2)

M. V. Zombeck, “Advanced X-ray Astrophysics Facility (AXAF)—Performance Requirements and Design Considerations,” Proc. Soc. Photo-Opt. Instrum. Eng. 84, 50 (1979).

L. P. VanSpeybroeck, “Einstein Observatory (HEAO-B) Mirror Design and Performance,” Proc. Soc. Photo-Opt. Instrum. Eng. 184, 2 (1979).

1972 (1)

1971 (1)

1969 (1)

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

1952 (1)

H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen,” Ann. Phys. 10, 94 (1952).
[CrossRef]

1948 (1)

Baez, A. V.

Birsa, F.

P. J. Serlemitsos, R. Petre, C. Glasser, F. Birsa, “Broad Band X-ray Astronomical Spectroscopy,” IEEE Trans. Nucl. Sci. NS-31, 786 (1984).
[CrossRef]

Chase, R. C.

Giacconi, R.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Glasser, C.

P. J. Serlemitsos, R. Petre, C. Glasser, F. Birsa, “Broad Band X-ray Astronomical Spectroscopy,” IEEE Trans. Nucl. Sci. NS-31, 786 (1984).
[CrossRef]

Kirkpatrick, P.

Petre, R.

P. J. Serlemitsos, R. Petre, C. Glasser, F. Birsa, “Broad Band X-ray Astronomical Spectroscopy,” IEEE Trans. Nucl. Sci. NS-31, 786 (1984).
[CrossRef]

Reidy, W. P.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Serlemitsos, P. J.

P. J. Serlemitsos, R. Petre, C. Glasser, F. Birsa, “Broad Band X-ray Astronomical Spectroscopy,” IEEE Trans. Nucl. Sci. NS-31, 786 (1984).
[CrossRef]

Vaiana, G. S.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

VanSpeybroeck, L. P.

L. P. VanSpeybroeck, “Einstein Observatory (HEAO-B) Mirror Design and Performance,” Proc. Soc. Photo-Opt. Instrum. Eng. 184, 2 (1979).

L. P. VanSpeybroeck, R. C. Chase, “Design Parameters of Paraboloid–Hyperboloid Telescopes for X-ray Astronomy,” Appl. Opt. 11, 440(1972).
[CrossRef] [PubMed]

L. P. VanSpeybroeck, R. C. Chase, T. F. Zehnpfennig, “Orthogonal Mirror Telescopes for X-ray Astronomy,” Appl. Opt. 10, 945 (1971).
[CrossRef] [PubMed]

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Wolter, H.

H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen,” Ann. Phys. 10, 94 (1952).
[CrossRef]

Zehnpfennig, T.

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Zehnpfennig, T. F.

Zombeck, M. V.

M. V. Zombeck, “Advanced X-ray Astrophysics Facility (AXAF)—Performance Requirements and Design Considerations,” Proc. Soc. Photo-Opt. Instrum. Eng. 84, 50 (1979).

Ann. Phys. (1)

H. Wolter, “Spiegelsysteme streifenden Einfalls als abbildende Optiken fur Rontgenstrahlen,” Ann. Phys. 10, 94 (1952).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Nucl. Sci. (1)

P. J. Serlemitsos, R. Petre, C. Glasser, F. Birsa, “Broad Band X-ray Astronomical Spectroscopy,” IEEE Trans. Nucl. Sci. NS-31, 786 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

M. V. Zombeck, “Advanced X-ray Astrophysics Facility (AXAF)—Performance Requirements and Design Considerations,” Proc. Soc. Photo-Opt. Instrum. Eng. 84, 50 (1979).

L. P. VanSpeybroeck, “Einstein Observatory (HEAO-B) Mirror Design and Performance,” Proc. Soc. Photo-Opt. Instrum. Eng. 184, 2 (1979).

Space Sci. Rev. (1)

R. Giacconi, W. P. Reidy, G. S. Vaiana, L. P. VanSpeybroeck, T. Zehnpfennig, “Grazing Incidence Telescopes for X-ray Astronomy,” Space Sci. Rev. 9, 3 (1969).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of a conical imaging x-ray mirror. The basic design parameters are described in the text.

Fig. 2
Fig. 2

Demonstration that all reflectors of a single focusing element are portions of same annulus: (a) flattened conical reflector comprises a portion of an annulus; (b) annular segment bent into conical shape has grazing angle χ for axial rays.

Fig. 3
Fig. 3

Theoretical spatial resolution (HPR) vs f/No. and ζ for conical x-ray mirrors. The parameter ζ is defined in the text.

Fig. 4
Fig. 4

Approximate filling factor (utilized percentage of aperture area) vs f/No. and ζ for conical x-ray mirrors.

Fig. 5
Fig. 5

Effective area vs incident photon energy for BBXRT mirror at three incident angles θ. Dashed line represents the approximate effective area of the Einstein Observatory imaging mirror.

Fig. 6
Fig. 6

Assembled quadrant of a BBXRT mirror. The mirror consists of 101 nested mirror pairs and has an outer radius of 20 cm. Both the primary and secondary elements are shown.

Fig. 7
Fig. 7

Example of a high-resolution conical mirror design. A conical mirror (CM) with the AXAF aperture (1.2-m diameter) and focal length (10 m) is compared to the proposed AXAF design. Left: effective area vs off-axis angle at various energies. Right: half power radius vs off-axis angle.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( R ) = 1 / [ ( 2 π ) 3 / 2 * 1.5 ] * 1 / R exp [ ( r 2 / 4.5 ) ] ,
HPR G = K W R o 2 / L 2 ,

Metrics