Abstract

Published measurements of Faraday rotation in a variety of materials in pulsed magnetic fields show a time-dependent or hysteresis effect in which the angle of rotation lags the magnetic field as a function of time. We show that this effect is an artifact introduced by using a passive resistance-capacitance circuit to integrate the induced electromotive force (EMF) from a pickup coil to obtain the magnetic field. By numerically integrating the sampled-induced EMF signal, the effect vanishes. However, we propose an experimental situation where such a time lag should appear, allowing measurement of the spin-lattice relaxation time of the ion responsible for the Faraday rotation.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. George, R. W. Waniek, S. W. Lee, “Faraday Effect at Optical Frequencies in Strong Magnetic Fields,” Appl. Opt. 4, 253 (1965).
    [CrossRef]
  2. K. Dismukes, S. H. Lott, J. P. Barach, “Faraday Effect Measurements with Pulsed Magnetic Fields,” Appl. Opt. 5, 1246 (1966).
    [CrossRef] [PubMed]
  3. A. Balbin Villaverde, D. A. Donatti, D. G. Bozinis, “Terbium Gallium Garnet Verdet Constant Measurements with Pulsed Magnetic Fields,” J. Phys. C. 11, L495 (1978).
    [CrossRef]
  4. A. Balbin Villaverde, E. C. C. Vasconcellos, “Magnetooptical Dispersion of Hoya Glasses: AOT-5, AOT-44B, and FR-5,” Appl. Opt. 21, 1347 (1982).
    [CrossRef]
  5. J. A. Davis, R. M. Bunch, “Temperature Dependence of the Faraday Rotation of Hoya FR-5 Glass,” Appl. Opt. 23, 633 (1984).
    [CrossRef] [PubMed]
  6. J. A. Davis, “Gallium Arsenide Laser Diode Emission Spectra in Pulsed Magnetic Fields of up to 26 T,” J. Appl. Phys. 53, 3921 (1982).
    [CrossRef]
  7. R. C. Cross, G. A. Collins, “Compensated RC Integrators,” Am. J. Phys. 49, 479 (1981).
    [CrossRef]
  8. C. Kittel, Introduction to Solid State Physics (Wiley, New York, (1971).
  9. B. G. Berulava, T. I. Sanadze, O. G. Khakhanashvili, “Relaxation Processes in Paramagnetic Resonance in U3+ and Tb3+ in CaF2,” Sov. Phys. Solid State 7, 509 (1965).

1984

1982

J. A. Davis, “Gallium Arsenide Laser Diode Emission Spectra in Pulsed Magnetic Fields of up to 26 T,” J. Appl. Phys. 53, 3921 (1982).
[CrossRef]

A. Balbin Villaverde, E. C. C. Vasconcellos, “Magnetooptical Dispersion of Hoya Glasses: AOT-5, AOT-44B, and FR-5,” Appl. Opt. 21, 1347 (1982).
[CrossRef]

1981

R. C. Cross, G. A. Collins, “Compensated RC Integrators,” Am. J. Phys. 49, 479 (1981).
[CrossRef]

1978

A. Balbin Villaverde, D. A. Donatti, D. G. Bozinis, “Terbium Gallium Garnet Verdet Constant Measurements with Pulsed Magnetic Fields,” J. Phys. C. 11, L495 (1978).
[CrossRef]

1966

1965

N. George, R. W. Waniek, S. W. Lee, “Faraday Effect at Optical Frequencies in Strong Magnetic Fields,” Appl. Opt. 4, 253 (1965).
[CrossRef]

B. G. Berulava, T. I. Sanadze, O. G. Khakhanashvili, “Relaxation Processes in Paramagnetic Resonance in U3+ and Tb3+ in CaF2,” Sov. Phys. Solid State 7, 509 (1965).

Balbin Villaverde, A.

A. Balbin Villaverde, E. C. C. Vasconcellos, “Magnetooptical Dispersion of Hoya Glasses: AOT-5, AOT-44B, and FR-5,” Appl. Opt. 21, 1347 (1982).
[CrossRef]

A. Balbin Villaverde, D. A. Donatti, D. G. Bozinis, “Terbium Gallium Garnet Verdet Constant Measurements with Pulsed Magnetic Fields,” J. Phys. C. 11, L495 (1978).
[CrossRef]

Barach, J. P.

Berulava, B. G.

B. G. Berulava, T. I. Sanadze, O. G. Khakhanashvili, “Relaxation Processes in Paramagnetic Resonance in U3+ and Tb3+ in CaF2,” Sov. Phys. Solid State 7, 509 (1965).

Bozinis, D. G.

A. Balbin Villaverde, D. A. Donatti, D. G. Bozinis, “Terbium Gallium Garnet Verdet Constant Measurements with Pulsed Magnetic Fields,” J. Phys. C. 11, L495 (1978).
[CrossRef]

Bunch, R. M.

Collins, G. A.

R. C. Cross, G. A. Collins, “Compensated RC Integrators,” Am. J. Phys. 49, 479 (1981).
[CrossRef]

Cross, R. C.

R. C. Cross, G. A. Collins, “Compensated RC Integrators,” Am. J. Phys. 49, 479 (1981).
[CrossRef]

Davis, J. A.

J. A. Davis, R. M. Bunch, “Temperature Dependence of the Faraday Rotation of Hoya FR-5 Glass,” Appl. Opt. 23, 633 (1984).
[CrossRef] [PubMed]

J. A. Davis, “Gallium Arsenide Laser Diode Emission Spectra in Pulsed Magnetic Fields of up to 26 T,” J. Appl. Phys. 53, 3921 (1982).
[CrossRef]

Dismukes, K.

Donatti, D. A.

A. Balbin Villaverde, D. A. Donatti, D. G. Bozinis, “Terbium Gallium Garnet Verdet Constant Measurements with Pulsed Magnetic Fields,” J. Phys. C. 11, L495 (1978).
[CrossRef]

George, N.

Khakhanashvili, O. G.

B. G. Berulava, T. I. Sanadze, O. G. Khakhanashvili, “Relaxation Processes in Paramagnetic Resonance in U3+ and Tb3+ in CaF2,” Sov. Phys. Solid State 7, 509 (1965).

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley, New York, (1971).

Lee, S. W.

Lott, S. H.

Sanadze, T. I.

B. G. Berulava, T. I. Sanadze, O. G. Khakhanashvili, “Relaxation Processes in Paramagnetic Resonance in U3+ and Tb3+ in CaF2,” Sov. Phys. Solid State 7, 509 (1965).

Vasconcellos, E. C. C.

Waniek, R. W.

Am. J. Phys.

R. C. Cross, G. A. Collins, “Compensated RC Integrators,” Am. J. Phys. 49, 479 (1981).
[CrossRef]

Appl. Opt.

J. Appl. Phys.

J. A. Davis, “Gallium Arsenide Laser Diode Emission Spectra in Pulsed Magnetic Fields of up to 26 T,” J. Appl. Phys. 53, 3921 (1982).
[CrossRef]

J. Phys. C.

A. Balbin Villaverde, D. A. Donatti, D. G. Bozinis, “Terbium Gallium Garnet Verdet Constant Measurements with Pulsed Magnetic Fields,” J. Phys. C. 11, L495 (1978).
[CrossRef]

Sov. Phys. Solid State

B. G. Berulava, T. I. Sanadze, O. G. Khakhanashvili, “Relaxation Processes in Paramagnetic Resonance in U3+ and Tb3+ in CaF2,” Sov. Phys. Solid State 7, 509 (1965).

Other

C. Kittel, Introduction to Solid State Physics (Wiley, New York, (1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(A) Transmitted light intensity for a sample of Hoya FR-5 glass vs time in a pulsed magnetic field. (B) Apparent magnetic field as a function of time. The magnetic field is incorrectly measured using the RC integrator circuit.

Fig. 2
Fig. 2

Transmitted light intensity vs the apparent pulsed magnetic field for a sample of Hoya FR-5 glass. The magnetic field is incorrectly measured using the RC integrator circuit.

Fig. 3
Fig. 3

Transmitted light intensity vs the pulsed magnetic field for a sample of Hoya FR-5 glass. The magnetic field is calculated by numerically integrating the induced EMF from a pickup coil.

Fig. 4
Fig. 4

Transmitted light intensity (top) and pulsed magnetic field (bottom) vs time for a sample of Hoya FR-5 glass at low temperature. Horizontal scale: 500 nsec/div.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ = V d H .
I = I 0 cos 2 ( θ + θ 0 ) ,

Metrics