Abstract

A photoacoustic signal rise time technique is used to evaluate the suitability of several surface materials for minimizing sample adsorption loss in a trace level toxic vapor monitor. Four materials, 304 stainless steel, gold, paraffin wax, and Teflon, are tested using ammonia as a sample. Teflon is also tested using hydrazine. Results show that both metals interact strongly with the sample. Teflon coating is found to provide the resonant photoacoustic cell with accurate real time response for both hydrazine and ammonia sample flows.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Kerr, J. G. Atwood, “The Laser Illuminated Absorptivity Spectrophone: a method for Measurement of weak Absorptivity in Gases at Laser Wavelengths,” Appl. Opt. 7, 915 (1968);L. B. Kreuzer, N. D. Kenyon, C. K. N. Patel, “Air Pollution: Sensitive Detection of Ten Pollutant Gases by Carbon Monoxide and Carbon Dioxide Lasers,” Science 177, 347 (1972);L. B. Kreuzer, “Laser Optoacoustic Spectroscopy—A New Technique of Gas Analysis,” Anal. Chem. 46, 239A (1974).
    [CrossRef] [PubMed]
  2. R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9-μm and 10-μm 12C 16O2 Laser Wavelengths,” Appl. Opt. 17, 3746 (1978).
    [CrossRef] [PubMed]
  3. R. Gelach, N. M. Amer, “Brewster Window and Windowless Resonant Spectrophones for Intracavity Operation,” Appl. Phys. 23, 319 (1980.
    [CrossRef]
  4. P. M. Morse, Vibration and Sound (McGraw-Hill, New York, 1948), p. 398.
  5. G. L. Loper, M. A. O'Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra between 27°C and −10°C,” Appl. Opt. 23, 3701 (1983).
    [CrossRef]
  6. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980.
    [CrossRef] [PubMed]
  7. R. H. Johnson, R. Gerlach, L. J. Thomas, N. M. Amer, “Loss Mechanisms in Resonant Spectrophones,” Appl. Opt. 21, 81 (1982).
    [CrossRef] [PubMed]

1983 (1)

G. L. Loper, M. A. O'Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra between 27°C and −10°C,” Appl. Opt. 23, 3701 (1983).
[CrossRef]

1982 (1)

1980 (2)

1978 (1)

1968 (1)

Amer, N. M.

R. H. Johnson, R. Gerlach, L. J. Thomas, N. M. Amer, “Loss Mechanisms in Resonant Spectrophones,” Appl. Opt. 21, 81 (1982).
[CrossRef] [PubMed]

R. Gelach, N. M. Amer, “Brewster Window and Windowless Resonant Spectrophones for Intracavity Operation,” Appl. Phys. 23, 319 (1980.
[CrossRef]

Atwood, J. G.

Brewer, R. J.

Bruce, C. W.

Calloway, A. R.

Gelach, R.

R. Gelach, N. M. Amer, “Brewster Window and Windowless Resonant Spectrophones for Intracavity Operation,” Appl. Phys. 23, 319 (1980.
[CrossRef]

Gelbwachs, J. A.

G. L. Loper, M. A. O'Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra between 27°C and −10°C,” Appl. Opt. 23, 3701 (1983).
[CrossRef]

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980.
[CrossRef] [PubMed]

Gerlach, R.

Johnson, R. H.

Kerr, E. L.

Loper, G. L.

G. L. Loper, M. A. O'Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra between 27°C and −10°C,” Appl. Opt. 23, 3701 (1983).
[CrossRef]

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980.
[CrossRef] [PubMed]

Morse, P. M.

P. M. Morse, Vibration and Sound (McGraw-Hill, New York, 1948), p. 398.

O'Neill, M. A.

G. L. Loper, M. A. O'Neill, J. A. Gelbwachs, “Water-Vapor Continuum CO2 Laser Absorption Spectra between 27°C and −10°C,” Appl. Opt. 23, 3701 (1983).
[CrossRef]

Stamps, M. A.

Thomas, L. J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Photoacoustic response as a function of time following flow introduction into the cell for various cell coatings and gas samples. The solid line is the response calculated from Eq. (2). Curves are normalized to a common maximum.

Tables (2)

Tables Icon

Table I Cell Performance Characteristics

Tables Icon

Table II Effect of Surface Coating on Signal Rise Time and Cell Q

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dC i ( t ) dt = R V [ F i C i ( t ) ] ,
C i ( t ) = F i [ 1 exp ( Rt / V ) ] .

Metrics