## Abstract

The technique of total internal reflection microscopy (TIRM) introduced by P. Temple for inspection of the surface structure of transparent substrates is extended here for use with materials exhibiting high bulk scatter. A strong dependence of scratch illumination on the angle between scratches and the *S* polarization direction is observed and explained via a simple model.

© 1985 Optical Society of America

Full Article |

PDF Article
### Equations (8)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${\xca}_{s}\phantom{\rule{0.1em}{0ex}}(\rho )\phantom{\rule{0.2em}{0ex}}={\xca}_{0}exp(ik\rho \phantom{\rule{0.1em}{0ex}}sin\phantom{\rule{0em}{0ex}}\theta sin\phantom{\rule{0em}{0ex}}\psi )\phantom{\rule{0.2em}{0ex}},$$
(2)
$$dP={\alpha}_{\parallel}\phantom{\rule{0.1em}{0ex}}{E}_{s}\phantom{\rule{0.2em}{0ex}}(\rho )\phantom{\rule{0.2em}{0ex}}cos\phantom{\rule{0em}{0ex}}\psi d\rho \phantom{\rule{0.2em}{0ex}}.$$
(3)
$$d\rho \phantom{\rule{0.2em}{0ex}}\ll \phantom{\rule{0.2em}{0ex}}\mathrm{\lambda}\phantom{\rule{0.2em}{0ex}}\ll \phantom{\rule{0.2em}{0ex}}r,$$
(4)
$$d\xca\phantom{\rule{0.1em}{0ex}}=\phantom{\rule{0.1em}{0ex}}{k}^{2}\phantom{\rule{0.2em}{0ex}}\frac{exp\phantom{\rule{0em}{0ex}}(\mathit{\text{ikr}})}{r}\phantom{\rule{0.2em}{0ex}}(\widehat{n}\times \widehat{\rho})\times \widehat{n}\phantom{\rule{0.1em}{0ex}},$$
(5)
$$\begin{array}{c}d\xca\phantom{\rule{0.1em}{0ex}}=\phantom{\rule{0.1em}{0ex}}{\alpha}_{\parallel}{k}^{2}{E}_{s}\phantom{\rule{0.2em}{0ex}}(\rho )\phantom{\rule{0.1em}{0ex}}cos\phantom{\rule{0em}{0ex}}\psi \phantom{\rule{0.2em}{0ex}}\frac{exp\phantom{\rule{0.1em}{0ex}}(\mathit{\text{ikr}})}{r}dP\phantom{\rule{0.1em}{0ex}}(\widehat{n}\times \widehat{p})\times \widehat{n}\\ \xca={\mathit{\int}}_{-L/2}^{L/2}\phantom{\rule{0.2em}{0ex}}d\xca\phantom{\rule{0.1em}{0ex}}.\end{array}$$
(6)
$$E={\alpha}_{\parallel}{k}^{2}cos\phantom{\rule{0em}{0ex}}\psi \phantom{\rule{0.2em}{0ex}}\frac{exp\phantom{\rule{0em}{0ex}}(\mathit{\text{ikr}})}{r}\phantom{\rule{0.2em}{0ex}}{\mathit{\int}}_{-L/2}^{L/2}\phantom{\rule{0.2em}{0ex}}{E}_{s}\phantom{\rule{0.2em}{0ex}}(\rho )\phantom{\rule{0.1em}{0ex}}d\rho \phantom{\rule{0.2em}{0ex}}.$$
(7)
$$P={P}_{0}{cos}^{2}\psi {\phantom{\rule{0.3em}{0ex}}\left(\frac{sin\phantom{\rule{0em}{0ex}}x}{x}\right)}^{2}\phantom{\rule{0.2em}{0ex}},$$
(8)
$$x=Lksin\phantom{\rule{0em}{0ex}}\theta sin\phantom{\rule{0em}{0ex}}\psi \phantom{\rule{0.2em}{0ex}}.$$