Abstract

A wide-angle Michelson Doppler imaging interferometer (WAMDII) is described that is intended to measure upper atmospheric winds and temperatures from naturally occurring visible region emissions, using Spacelab as a platform. It is an achromatic field-widened instrument, with good thermal stability, that employs four quarterwave phase-stepped images to generate full images of velocity, temperature, and emission rate. For an apparent emission rate of 5 kR and binning into 85 × 105 pixels, the required exposure time is 1 sec. The concept and underlying principles are described, along with some fabrication details for the prototype instrument. The results of laboratory tests and field measurements using auroral emissions are described and discussed.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Hansen, “Die Sichtbarkeit der Interferenzen beim Twyman-Interferometer,” Optik 12, 5 (1955).
  2. G. Hansen, W. Kinder, “Abhängigkeit des kontrastes der Fizeau-Streifen im Michelson-Interferometer vom Durchmesser der Aperturblende,” Optik 15, 560 (1958).
  3. J. W. Evans, “The Birefringent Filter,” J. Opt. Soc. Am. 39, 229 (1949).
    [CrossRef]
  4. L. Mertz, “A Fourier Description of Optical Interference Devices Part I,” J. Opt. Soc. Am. 49, iv (1959).
  5. L. Mertz, Transformations in Optics (Wiley, New York, 1965).
  6. L. Mertz, “Field Widened Michelson Interferometer,” J. Opt. Soc. Am. 57, No. 2, iv (1967).
  7. P. Bouchareine, P. Connes, “Interféromètre a Champ Compensé Pour Spectroscopic par Transformation de Fourier,” J. Phys. Radium 24, 134 (1963).
  8. W. H. Steel, Interferometry (Cambridge U.P., London, 1967).
  9. D. Baker, “Field-Widened Interferometers for Fourier Spectroscopy,” in Spectrometric Techniques, Vol. 1, G. Vanasse, Ed. (Academic, New York, 1977).
  10. R. L. Hilliard, G. G. Shepherd, “Wide-Angle Michelson Interferometer for Measuring Doppler Line Widths,” J. Opt. Soc. Am. 56, 362 (1966).
    [CrossRef]
  11. J. Ring, J. W. Schofield, “Field Compensated Michelson Spectrometers,” Appl. Opt. 11, 507 (1972).
    [CrossRef] [PubMed]
  12. D. Baker, A. Steed, A. T. Stair, “Development of Infrared Interferometry for Upper Atmospheric Emission Studies,” Appl. Opt. 20, 1734 (1981).
    [CrossRef] [PubMed]
  13. R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperature from Doppler Line Widths,” Planet. Space Sci. 14, 383 (1966).
    [CrossRef]
  14. H. H. Zwick, G. G. Shepherd, “Auroral Electron Energy Spectra and Fluxes Deduced From the 5577 and 6300Å Atomic Oxygen Emissions,” Planet. Space Sci. 21, 605 (1973).
    [CrossRef]
  15. G. G. Shepherd, C. W. Lake, J. R. Miller, L. L. Cogger, “A Spatial Spectral Scanning Technique for the Fabry-Perot Spectrometer,” Appl. Opt. 4, 267 (1965).
    [CrossRef]
  16. J. Katzenstein, “The Axicon-Scanned Fabry-Perot Spectrometer,” Appl. Opt. 4, 263 (1965).
    [CrossRef]
  17. T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image Plane Detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503 (1983).
    [CrossRef] [PubMed]
  18. W. A. Gault, G. G. Shepherd, “WAMDII—A Wide Angle Michelson Doppler Imaging Interferometer for Spacelab,” Adv. Space Res. 2, 111 (1983).
    [CrossRef]
  19. D. J. W. Kendall, S. F. Johnston, J. A. Dobrowolski, G. G. Shepherd, “A Polarizing Wide-Angle Michelson Interferometer for Doppler Measurements of Atmospheric Emissions,” paper 54 presented at 1983 International Conference on Fourier Transform Spectroscopy, Durham, England (Sept. 1983).
  20. T. L. Killeen, P. B. Hays, “O(′S) From Dissociative Recombination of O2+: Nonthermal Line Profile Measurements From Dynamics Explorer,” J. Geophys. Res. 88, 10163 (1983).
    [CrossRef]
  21. A. M. Title, H. E. Ramsey, “Improvements in Birefringent Filters. 6: Analog Birefringent Elements,” Appl. Opt. 19, 2046 (1980).
    [CrossRef] [PubMed]
  22. H. H. Zwick, G. G. Shepherd, “Defocusing a Wide-Angle Michelson Interferometer,” Appl. Opt. 10, 2569 (1971).
    [CrossRef] [PubMed]
  23. F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).
  24. D. F. Barbe, “Noise and Distortion Considerations in Charge-Coupled Devices,” Electron. Lett. 8, 207 (1972).
    [CrossRef]
  25. D. F. Barbe, “Imaging Devices Using the Charge-Coupled Concept,” Proc. IEEE 63, 38 (1975).
    [CrossRef]
  26. A. Fowler, P. Waddell, L. Mortara, “Evaluation of the RCA 512 × 320 Charge-Coupled Device Imagers for Astronomical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 34 (1981).
  27. J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Beam Splitter for a Wide Angle Michelson Doppler Imaging Interferometer,” Appl. Opt. 24, (1985), this issue.
    [CrossRef] [PubMed]
  28. T. R. Hicks, N. K. Reay, R. J. Scaddan, “A Servo Controlled Fabry-Perot Interferometer Using Capacitance Micrometers for Error Detection,” J. Phys. E 7, 27 (1974).
    [CrossRef]
  29. J. R. Wimperis, S. F. Johnston, “Optical Cements for Interferometric Applications,” Appl. Opt. 23, 1145 (1984).
    [CrossRef]
  30. W. E. Ward, Z. Pasturczyk, W. A. Gault, G. G. Shepherd, “Multiple Reflections in a Wide Angle Michelson Interferometer,” Appl. Opt. 24, (1985), this issue.
    [CrossRef] [PubMed]
  31. G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003 (1984).
    [CrossRef]
  32. G. Hernandez, R. G. Roble, “Thermospheric Dynamics Investigations with Very High Resolution Spectrometers,” Appl. Opt. 18, 3376 (1979).
    [CrossRef] [PubMed]
  33. P. B. Hays, J. W. Meriwether, R. G. Roble, “Nighttime Thermospheric Winds at High Latitudes,” J. Geophys. Res. 84, 1905 (1979).
    [CrossRef]
  34. D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
    [CrossRef]
  35. R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
    [CrossRef]
  36. D. P. Sipler, M. A. Biondi, R. G. Roble, “F-Region Neutral Winds and Temperatures at Equatorial Latitudes: Measured and Predicted Behaviour During Geomagnetically Quiet Conditions,” Planet. Space Sci. 31, 53 (1983).
    [CrossRef]
  37. P. B. Hays et al., “Observations of the Dynamics of the Polar Thermosphere,” J. Geophys. Res. 89, 5597 (1984).
    [CrossRef]
  38. G. G. Sivjee, T. J. Hallinan, G. R. Swenson, “Fabry-Perot-Interferometer Imaging System for Thermospheric Temperature and Wind Measurements,” Appl. Opt. 19, 2206 (1980).
    [CrossRef] [PubMed]
  39. P. B. Hays, “High-Resolution Optical Measurements of Atmospheric Winds from Space. 1: Lower Atmosphere Molecular Absorption,” Appl. Opt. 21, 1136 (1982).
    [CrossRef] [PubMed]
  40. G. Hernandez, “Analytical Description of a Fabry-Perot Spectrometer. 6: Minimum Number of Samples Required in the Determination of Doppler Widths and Shifts,” Appl. Opt. 21, 1695 (1982).
    [CrossRef] [PubMed]
  41. T. M. Brown, “The Fourier Tachometer: Principles of Operation and Current Status,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 150.
  42. J. W. Evans, “The Fourier Tachometer: The Solid Polarizing Interferometer,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 155.
  43. J. O. Stenflo, “Solar Magnetic and Velocity-Field Measurements: New Instrument Concepts,” Appl. Opt. 23, 1267 (1984).
    [CrossRef] [PubMed]

1985 (3)

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Beam Splitter for a Wide Angle Michelson Doppler Imaging Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

W. E. Ward, Z. Pasturczyk, W. A. Gault, G. G. Shepherd, “Multiple Reflections in a Wide Angle Michelson Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

1984 (5)

G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003 (1984).
[CrossRef]

J. R. Wimperis, S. F. Johnston, “Optical Cements for Interferometric Applications,” Appl. Opt. 23, 1145 (1984).
[CrossRef]

J. O. Stenflo, “Solar Magnetic and Velocity-Field Measurements: New Instrument Concepts,” Appl. Opt. 23, 1267 (1984).
[CrossRef] [PubMed]

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

P. B. Hays et al., “Observations of the Dynamics of the Polar Thermosphere,” J. Geophys. Res. 89, 5597 (1984).
[CrossRef]

1983 (4)

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-Region Neutral Winds and Temperatures at Equatorial Latitudes: Measured and Predicted Behaviour During Geomagnetically Quiet Conditions,” Planet. Space Sci. 31, 53 (1983).
[CrossRef]

W. A. Gault, G. G. Shepherd, “WAMDII—A Wide Angle Michelson Doppler Imaging Interferometer for Spacelab,” Adv. Space Res. 2, 111 (1983).
[CrossRef]

T. L. Killeen, P. B. Hays, “O(′S) From Dissociative Recombination of O2+: Nonthermal Line Profile Measurements From Dynamics Explorer,” J. Geophys. Res. 88, 10163 (1983).
[CrossRef]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image Plane Detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503 (1983).
[CrossRef] [PubMed]

1982 (4)

P. B. Hays, “High-Resolution Optical Measurements of Atmospheric Winds from Space. 1: Lower Atmosphere Molecular Absorption,” Appl. Opt. 21, 1136 (1982).
[CrossRef] [PubMed]

G. Hernandez, “Analytical Description of a Fabry-Perot Spectrometer. 6: Minimum Number of Samples Required in the Determination of Doppler Widths and Shifts,” Appl. Opt. 21, 1695 (1982).
[CrossRef] [PubMed]

T. M. Brown, “The Fourier Tachometer: Principles of Operation and Current Status,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 150.

J. W. Evans, “The Fourier Tachometer: The Solid Polarizing Interferometer,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 155.

1981 (2)

A. Fowler, P. Waddell, L. Mortara, “Evaluation of the RCA 512 × 320 Charge-Coupled Device Imagers for Astronomical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 34 (1981).

D. Baker, A. Steed, A. T. Stair, “Development of Infrared Interferometry for Upper Atmospheric Emission Studies,” Appl. Opt. 20, 1734 (1981).
[CrossRef] [PubMed]

1980 (2)

1979 (3)

G. Hernandez, R. G. Roble, “Thermospheric Dynamics Investigations with Very High Resolution Spectrometers,” Appl. Opt. 18, 3376 (1979).
[CrossRef] [PubMed]

P. B. Hays, J. W. Meriwether, R. G. Roble, “Nighttime Thermospheric Winds at High Latitudes,” J. Geophys. Res. 84, 1905 (1979).
[CrossRef]

F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).

1975 (1)

D. F. Barbe, “Imaging Devices Using the Charge-Coupled Concept,” Proc. IEEE 63, 38 (1975).
[CrossRef]

1974 (1)

T. R. Hicks, N. K. Reay, R. J. Scaddan, “A Servo Controlled Fabry-Perot Interferometer Using Capacitance Micrometers for Error Detection,” J. Phys. E 7, 27 (1974).
[CrossRef]

1973 (1)

H. H. Zwick, G. G. Shepherd, “Auroral Electron Energy Spectra and Fluxes Deduced From the 5577 and 6300Å Atomic Oxygen Emissions,” Planet. Space Sci. 21, 605 (1973).
[CrossRef]

1972 (2)

D. F. Barbe, “Noise and Distortion Considerations in Charge-Coupled Devices,” Electron. Lett. 8, 207 (1972).
[CrossRef]

J. Ring, J. W. Schofield, “Field Compensated Michelson Spectrometers,” Appl. Opt. 11, 507 (1972).
[CrossRef] [PubMed]

1971 (1)

1967 (1)

L. Mertz, “Field Widened Michelson Interferometer,” J. Opt. Soc. Am. 57, No. 2, iv (1967).

1966 (2)

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperature from Doppler Line Widths,” Planet. Space Sci. 14, 383 (1966).
[CrossRef]

R. L. Hilliard, G. G. Shepherd, “Wide-Angle Michelson Interferometer for Measuring Doppler Line Widths,” J. Opt. Soc. Am. 56, 362 (1966).
[CrossRef]

1965 (2)

1963 (1)

P. Bouchareine, P. Connes, “Interféromètre a Champ Compensé Pour Spectroscopic par Transformation de Fourier,” J. Phys. Radium 24, 134 (1963).

1959 (1)

L. Mertz, “A Fourier Description of Optical Interference Devices Part I,” J. Opt. Soc. Am. 49, iv (1959).

1958 (1)

G. Hansen, W. Kinder, “Abhängigkeit des kontrastes der Fizeau-Streifen im Michelson-Interferometer vom Durchmesser der Aperturblende,” Optik 15, 560 (1958).

1955 (1)

G. Hansen, “Die Sichtbarkeit der Interferenzen beim Twyman-Interferometer,” Optik 12, 5 (1955).

1949 (1)

Baker, D.

D. Baker, A. Steed, A. T. Stair, “Development of Infrared Interferometry for Upper Atmospheric Emission Studies,” Appl. Opt. 20, 1734 (1981).
[CrossRef] [PubMed]

D. Baker, “Field-Widened Interferometers for Fourier Spectroscopy,” in Spectrometric Techniques, Vol. 1, G. Vanasse, Ed. (Academic, New York, 1977).

Barbe, D. F.

D. F. Barbe, “Imaging Devices Using the Charge-Coupled Concept,” Proc. IEEE 63, 38 (1975).
[CrossRef]

D. F. Barbe, “Noise and Distortion Considerations in Charge-Coupled Devices,” Electron. Lett. 8, 207 (1972).
[CrossRef]

Biondi, M. A.

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-Region Neutral Winds and Temperatures at Equatorial Latitudes: Measured and Predicted Behaviour During Geomagnetically Quiet Conditions,” Planet. Space Sci. 31, 53 (1983).
[CrossRef]

Blouke, M. M.

F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).

Bouchareine, P.

P. Bouchareine, P. Connes, “Interféromètre a Champ Compensé Pour Spectroscopic par Transformation de Fourier,” J. Phys. Radium 24, 134 (1963).

Brown, T. M.

T. M. Brown, “The Fourier Tachometer: Principles of Operation and Current Status,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 150.

Ceckowski, D. H.

Charleton, P. J.

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

Cogger, L. L.

Connes, P.

P. Bouchareine, P. Connes, “Interféromètre a Champ Compensé Pour Spectroscopic par Transformation de Fourier,” J. Phys. Radium 24, 134 (1963).

Deehr, C. S.

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

Dobrowolski, J. A.

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Beam Splitter for a Wide Angle Michelson Doppler Imaging Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

D. J. W. Kendall, S. F. Johnston, J. A. Dobrowolski, G. G. Shepherd, “A Polarizing Wide-Angle Michelson Interferometer for Doppler Measurements of Atmospheric Emissions,” paper 54 presented at 1983 International Conference on Fourier Transform Spectroscopy, Durham, England (Sept. 1983).

Evans, J. W.

J. W. Evans, “The Fourier Tachometer: The Solid Polarizing Interferometer,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 155.

J. W. Evans, “The Birefringent Filter,” J. Opt. Soc. Am. 39, 229 (1949).
[CrossRef]

Fowler, A.

A. Fowler, P. Waddell, L. Mortara, “Evaluation of the RCA 512 × 320 Charge-Coupled Device Imagers for Astronomical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 34 (1981).

Gault, W. A.

W. E. Ward, Z. Pasturczyk, W. A. Gault, G. G. Shepherd, “Multiple Reflections in a Wide Angle Michelson Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

W. A. Gault, G. G. Shepherd, “WAMDII—A Wide Angle Michelson Doppler Imaging Interferometer for Spacelab,” Adv. Space Res. 2, 111 (1983).
[CrossRef]

Gordon, R.

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

Greenaway, A. H.

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

Hall, J. R.

F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).

Hallinan, T. J.

Hansen, G.

G. Hansen, W. Kinder, “Abhängigkeit des kontrastes der Fizeau-Streifen im Michelson-Interferometer vom Durchmesser der Aperturblende,” Optik 15, 560 (1958).

G. Hansen, “Die Sichtbarkeit der Interferenzen beim Twyman-Interferometer,” Optik 12, 5 (1955).

Hays, P. B.

P. B. Hays et al., “Observations of the Dynamics of the Polar Thermosphere,” J. Geophys. Res. 89, 5597 (1984).
[CrossRef]

T. L. Killeen, P. B. Hays, “O(′S) From Dissociative Recombination of O2+: Nonthermal Line Profile Measurements From Dynamics Explorer,” J. Geophys. Res. 88, 10163 (1983).
[CrossRef]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image Plane Detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503 (1983).
[CrossRef] [PubMed]

P. B. Hays, “High-Resolution Optical Measurements of Atmospheric Winds from Space. 1: Lower Atmosphere Molecular Absorption,” Appl. Opt. 21, 1136 (1982).
[CrossRef] [PubMed]

P. B. Hays, J. W. Meriwether, R. G. Roble, “Nighttime Thermospheric Winds at High Latitudes,” J. Geophys. Res. 84, 1905 (1979).
[CrossRef]

Henriksen, K.

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

Hernandez, G.

Hicks, T. R.

T. R. Hicks, N. K. Reay, R. J. Scaddan, “A Servo Controlled Fabry-Perot Interferometer Using Capacitance Micrometers for Error Detection,” J. Phys. E 7, 27 (1974).
[CrossRef]

Hilliard, R. L.

R. L. Hilliard, G. G. Shepherd, “Wide-Angle Michelson Interferometer for Measuring Doppler Line Widths,” J. Opt. Soc. Am. 56, 362 (1966).
[CrossRef]

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperature from Doppler Line Widths,” Planet. Space Sci. 14, 383 (1966).
[CrossRef]

Ho, F. C.

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Beam Splitter for a Wide Angle Michelson Doppler Imaging Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

Janesick, J. R.

F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).

Johnston, S. F.

J. R. Wimperis, S. F. Johnston, “Optical Cements for Interferometric Applications,” Appl. Opt. 23, 1145 (1984).
[CrossRef]

D. J. W. Kendall, S. F. Johnston, J. A. Dobrowolski, G. G. Shepherd, “A Polarizing Wide-Angle Michelson Interferometer for Doppler Measurements of Atmospheric Emissions,” paper 54 presented at 1983 International Conference on Fourier Transform Spectroscopy, Durham, England (Sept. 1983).

Katzenstein, J.

Kendall, D. J. W.

D. J. W. Kendall, S. F. Johnston, J. A. Dobrowolski, G. G. Shepherd, “A Polarizing Wide-Angle Michelson Interferometer for Doppler Measurements of Atmospheric Emissions,” paper 54 presented at 1983 International Conference on Fourier Transform Spectroscopy, Durham, England (Sept. 1983).

Kennedy, B. C.

Killeen, T. L.

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image Plane Detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503 (1983).
[CrossRef] [PubMed]

T. L. Killeen, P. B. Hays, “O(′S) From Dissociative Recombination of O2+: Nonthermal Line Profile Measurements From Dynamics Explorer,” J. Geophys. Res. 88, 10163 (1983).
[CrossRef]

Kinder, W.

G. Hansen, W. Kinder, “Abhängigkeit des kontrastes der Fizeau-Streifen im Michelson-Interferometer vom Durchmesser der Aperturblende,” Optik 15, 560 (1958).

Knapp, S. L.

F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).

Lake, C. W.

Landauer, F.

F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).

McCormac, F. G.

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

McWhirter, I.

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

Meriwether, J. W.

P. B. Hays, J. W. Meriwether, R. G. Roble, “Nighttime Thermospheric Winds at High Latitudes,” J. Geophys. Res. 84, 1905 (1979).
[CrossRef]

Mertz, L.

L. Mertz, “Field Widened Michelson Interferometer,” J. Opt. Soc. Am. 57, No. 2, iv (1967).

L. Mertz, “A Fourier Description of Optical Interference Devices Part I,” J. Opt. Soc. Am. 49, iv (1959).

L. Mertz, Transformations in Optics (Wiley, New York, 1965).

Miller, J. R.

Mortara, L.

A. Fowler, P. Waddell, L. Mortara, “Evaluation of the RCA 512 × 320 Charge-Coupled Device Imagers for Astronomical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 34 (1981).

Pasturczyk, Z.

W. E. Ward, Z. Pasturczyk, W. A. Gault, G. G. Shepherd, “Multiple Reflections in a Wide Angle Michelson Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

Ramsey, H. E.

Reay, N. K.

T. R. Hicks, N. K. Reay, R. J. Scaddan, “A Servo Controlled Fabry-Perot Interferometer Using Capacitance Micrometers for Error Detection,” J. Phys. E 7, 27 (1974).
[CrossRef]

Rees, D.

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

Ring, J.

Roble, R. G.

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-Region Neutral Winds and Temperatures at Equatorial Latitudes: Measured and Predicted Behaviour During Geomagnetically Quiet Conditions,” Planet. Space Sci. 31, 53 (1983).
[CrossRef]

P. B. Hays, J. W. Meriwether, R. G. Roble, “Nighttime Thermospheric Winds at High Latitudes,” J. Geophys. Res. 84, 1905 (1979).
[CrossRef]

G. Hernandez, R. G. Roble, “Thermospheric Dynamics Investigations with Very High Resolution Spectrometers,” Appl. Opt. 18, 3376 (1979).
[CrossRef] [PubMed]

Scaddan, R. J.

T. R. Hicks, N. K. Reay, R. J. Scaddan, “A Servo Controlled Fabry-Perot Interferometer Using Capacitance Micrometers for Error Detection,” J. Phys. E 7, 27 (1974).
[CrossRef]

Schofield, J. W.

Shepherd, G. G.

W. E. Ward, Z. Pasturczyk, W. A. Gault, G. G. Shepherd, “Multiple Reflections in a Wide Angle Michelson Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003 (1984).
[CrossRef]

W. A. Gault, G. G. Shepherd, “WAMDII—A Wide Angle Michelson Doppler Imaging Interferometer for Spacelab,” Adv. Space Res. 2, 111 (1983).
[CrossRef]

H. H. Zwick, G. G. Shepherd, “Auroral Electron Energy Spectra and Fluxes Deduced From the 5577 and 6300Å Atomic Oxygen Emissions,” Planet. Space Sci. 21, 605 (1973).
[CrossRef]

H. H. Zwick, G. G. Shepherd, “Defocusing a Wide-Angle Michelson Interferometer,” Appl. Opt. 10, 2569 (1971).
[CrossRef] [PubMed]

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperature from Doppler Line Widths,” Planet. Space Sci. 14, 383 (1966).
[CrossRef]

R. L. Hilliard, G. G. Shepherd, “Wide-Angle Michelson Interferometer for Measuring Doppler Line Widths,” J. Opt. Soc. Am. 56, 362 (1966).
[CrossRef]

G. G. Shepherd, C. W. Lake, J. R. Miller, L. L. Cogger, “A Spatial Spectral Scanning Technique for the Fabry-Perot Spectrometer,” Appl. Opt. 4, 267 (1965).
[CrossRef]

D. J. W. Kendall, S. F. Johnston, J. A. Dobrowolski, G. G. Shepherd, “A Polarizing Wide-Angle Michelson Interferometer for Doppler Measurements of Atmospheric Emissions,” paper 54 presented at 1983 International Conference on Fourier Transform Spectroscopy, Durham, England (Sept. 1983).

Sipler, D. P.

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-Region Neutral Winds and Temperatures at Equatorial Latitudes: Measured and Predicted Behaviour During Geomagnetically Quiet Conditions,” Planet. Space Sci. 31, 53 (1983).
[CrossRef]

Sivjee, G. G.

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

G. G. Sivjee, T. J. Hallinan, G. R. Swenson, “Fabry-Perot-Interferometer Imaging System for Thermospheric Temperature and Wind Measurements,” Appl. Opt. 19, 2206 (1980).
[CrossRef] [PubMed]

Smith, R. W.

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

Stair, A. T.

Steed, A.

Steel, W. H.

W. H. Steel, Interferometry (Cambridge U.P., London, 1967).

Steen, A.

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

Stenflo, J. O.

Swenson, G. R.

Symanow, D. A.

Title, A. M.

Waddell, P.

A. Fowler, P. Waddell, L. Mortara, “Evaluation of the RCA 512 × 320 Charge-Coupled Device Imagers for Astronomical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 34 (1981).

Waldorf, A.

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Beam Splitter for a Wide Angle Michelson Doppler Imaging Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

Ward, W. E.

W. E. Ward, Z. Pasturczyk, W. A. Gault, G. G. Shepherd, “Multiple Reflections in a Wide Angle Michelson Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

Wimperis, J. R.

Zwick, H. H.

H. H. Zwick, G. G. Shepherd, “Auroral Electron Energy Spectra and Fluxes Deduced From the 5577 and 6300Å Atomic Oxygen Emissions,” Planet. Space Sci. 21, 605 (1973).
[CrossRef]

H. H. Zwick, G. G. Shepherd, “Defocusing a Wide-Angle Michelson Interferometer,” Appl. Opt. 10, 2569 (1971).
[CrossRef] [PubMed]

Adv. Space Res. (1)

W. A. Gault, G. G. Shepherd, “WAMDII—A Wide Angle Michelson Doppler Imaging Interferometer for Spacelab,” Adv. Space Res. 2, 111 (1983).
[CrossRef]

Appl. Opt. (15)

W. E. Ward, Z. Pasturczyk, W. A. Gault, G. G. Shepherd, “Multiple Reflections in a Wide Angle Michelson Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

J. Katzenstein, “The Axicon-Scanned Fabry-Perot Spectrometer,” Appl. Opt. 4, 263 (1965).
[CrossRef]

G. G. Shepherd, C. W. Lake, J. R. Miller, L. L. Cogger, “A Spatial Spectral Scanning Technique for the Fabry-Perot Spectrometer,” Appl. Opt. 4, 267 (1965).
[CrossRef]

J. Ring, J. W. Schofield, “Field Compensated Michelson Spectrometers,” Appl. Opt. 11, 507 (1972).
[CrossRef] [PubMed]

G. Hernandez, R. G. Roble, “Thermospheric Dynamics Investigations with Very High Resolution Spectrometers,” Appl. Opt. 18, 3376 (1979).
[CrossRef] [PubMed]

A. M. Title, H. E. Ramsey, “Improvements in Birefringent Filters. 6: Analog Birefringent Elements,” Appl. Opt. 19, 2046 (1980).
[CrossRef] [PubMed]

G. G. Sivjee, T. J. Hallinan, G. R. Swenson, “Fabry-Perot-Interferometer Imaging System for Thermospheric Temperature and Wind Measurements,” Appl. Opt. 19, 2206 (1980).
[CrossRef] [PubMed]

D. Baker, A. Steed, A. T. Stair, “Development of Infrared Interferometry for Upper Atmospheric Emission Studies,” Appl. Opt. 20, 1734 (1981).
[CrossRef] [PubMed]

P. B. Hays, “High-Resolution Optical Measurements of Atmospheric Winds from Space. 1: Lower Atmosphere Molecular Absorption,” Appl. Opt. 21, 1136 (1982).
[CrossRef] [PubMed]

G. Hernandez, “Analytical Description of a Fabry-Perot Spectrometer. 6: Minimum Number of Samples Required in the Determination of Doppler Widths and Shifts,” Appl. Opt. 21, 1695 (1982).
[CrossRef] [PubMed]

T. L. Killeen, B. C. Kennedy, P. B. Hays, D. A. Symanow, D. H. Ceckowski, “Image Plane Detector for the Dynamics Explorer Fabry-Perot Interferometer,” Appl. Opt. 22, 3503 (1983).
[CrossRef] [PubMed]

J. R. Wimperis, S. F. Johnston, “Optical Cements for Interferometric Applications,” Appl. Opt. 23, 1145 (1984).
[CrossRef]

J. O. Stenflo, “Solar Magnetic and Velocity-Field Measurements: New Instrument Concepts,” Appl. Opt. 23, 1267 (1984).
[CrossRef] [PubMed]

J. A. Dobrowolski, F. C. Ho, A. Waldorf, “Beam Splitter for a Wide Angle Michelson Doppler Imaging Interferometer,” Appl. Opt. 24, (1985), this issue.
[CrossRef] [PubMed]

H. H. Zwick, G. G. Shepherd, “Defocusing a Wide-Angle Michelson Interferometer,” Appl. Opt. 10, 2569 (1971).
[CrossRef] [PubMed]

Electron. Lett. (1)

D. F. Barbe, “Noise and Distortion Considerations in Charge-Coupled Devices,” Electron. Lett. 8, 207 (1972).
[CrossRef]

Geophys. Res. Lett. (1)

G. G. Shepherd et al., “Optical Doppler Imaging of the Aurora Borealis,” Geophys. Res. Lett. 11, 1003 (1984).
[CrossRef]

J. Geophys. Res. (3)

P. B. Hays et al., “Observations of the Dynamics of the Polar Thermosphere,” J. Geophys. Res. 89, 5597 (1984).
[CrossRef]

T. L. Killeen, P. B. Hays, “O(′S) From Dissociative Recombination of O2+: Nonthermal Line Profile Measurements From Dynamics Explorer,” J. Geophys. Res. 88, 10163 (1983).
[CrossRef]

P. B. Hays, J. W. Meriwether, R. G. Roble, “Nighttime Thermospheric Winds at High Latitudes,” J. Geophys. Res. 84, 1905 (1979).
[CrossRef]

J. Opt. Soc. Am. (4)

L. Mertz, “A Fourier Description of Optical Interference Devices Part I,” J. Opt. Soc. Am. 49, iv (1959).

L. Mertz, “Field Widened Michelson Interferometer,” J. Opt. Soc. Am. 57, No. 2, iv (1967).

J. W. Evans, “The Birefringent Filter,” J. Opt. Soc. Am. 39, 229 (1949).
[CrossRef]

R. L. Hilliard, G. G. Shepherd, “Wide-Angle Michelson Interferometer for Measuring Doppler Line Widths,” J. Opt. Soc. Am. 56, 362 (1966).
[CrossRef]

J. Phys. E (1)

T. R. Hicks, N. K. Reay, R. J. Scaddan, “A Servo Controlled Fabry-Perot Interferometer Using Capacitance Micrometers for Error Detection,” J. Phys. E 7, 27 (1974).
[CrossRef]

J. Phys. Radium (1)

P. Bouchareine, P. Connes, “Interféromètre a Champ Compensé Pour Spectroscopic par Transformation de Fourier,” J. Phys. Radium 24, 134 (1963).

Jet Propulsion Laboratory, California Institute of Technology (1)

F. Landauer, J. R. Janesick, S. L. Knapp, M. M. Blouke, J. R. Hall, “An 800 × 800 CCD Imager for Space-Borne Scientific Imaging,” Jet Propulsion Laboratory, California Institute of Technology (1979).

Optik (2)

G. Hansen, “Die Sichtbarkeit der Interferenzen beim Twyman-Interferometer,” Optik 12, 5 (1955).

G. Hansen, W. Kinder, “Abhängigkeit des kontrastes der Fizeau-Streifen im Michelson-Interferometer vom Durchmesser der Aperturblende,” Optik 15, 560 (1958).

Planet. Space Sci. (5)

R. L. Hilliard, G. G. Shepherd, “Upper Atmospheric Temperature from Doppler Line Widths,” Planet. Space Sci. 14, 383 (1966).
[CrossRef]

H. H. Zwick, G. G. Shepherd, “Auroral Electron Energy Spectra and Fluxes Deduced From the 5577 and 6300Å Atomic Oxygen Emissions,” Planet. Space Sci. 21, 605 (1973).
[CrossRef]

D. Rees, A. H. Greenaway, R. Gordon, I. McWhirter, P. J. Charleton, A. Steen, “The Doppler Imaging System: Initial Observations of the Auroral Thermosphere,” Planet. Space Sci. 32, 273 (1984).
[CrossRef]

R. W. Smith, K. Henriksen, C. S. Deehr, D. Rees, F. G. McCormac, G. G. Sivjee, “Thermospheric Winds in the Cospia Dependence of the Latitude of the Cusp,” Planet. Space Sci. 33, 305 (1985).
[CrossRef]

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-Region Neutral Winds and Temperatures at Equatorial Latitudes: Measured and Predicted Behaviour During Geomagnetically Quiet Conditions,” Planet. Space Sci. 31, 53 (1983).
[CrossRef]

Proc. IEEE (1)

D. F. Barbe, “Imaging Devices Using the Charge-Coupled Concept,” Proc. IEEE 63, 38 (1975).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

A. Fowler, P. Waddell, L. Mortara, “Evaluation of the RCA 512 × 320 Charge-Coupled Device Imagers for Astronomical Use,” Proc. Soc. Photo-Opt. Instrum. Eng. 290, 34 (1981).

Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (2)

T. M. Brown, “The Fourier Tachometer: Principles of Operation and Current Status,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 150.

J. W. Evans, “The Fourier Tachometer: The Solid Polarizing Interferometer,” in Solar Instrumentation: What's Next?, Proceedings, Sacramento Peak National Observatory Conference (1982), p. 155.

Other (4)

L. Mertz, Transformations in Optics (Wiley, New York, 1965).

D. J. W. Kendall, S. F. Johnston, J. A. Dobrowolski, G. G. Shepherd, “A Polarizing Wide-Angle Michelson Interferometer for Doppler Measurements of Atmospheric Emissions,” paper 54 presented at 1983 International Conference on Fourier Transform Spectroscopy, Durham, England (Sept. 1983).

W. H. Steel, Interferometry (Cambridge U.P., London, 1967).

D. Baker, “Field-Widened Interferometers for Fourier Spectroscopy,” in Spectrometric Techniques, Vol. 1, G. Vanasse, Ed. (Academic, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Generalized optical path difference ABC through a plate of refractive index n and thickness d. (b) Generalized path difference for three glass plates of thicknesses d1, d2, and d3 and refractive indices n1, n2, and n3, respectively.

Fig. 2
Fig. 2

Calculated variation of optical path difference (OPD) relative to the value at normal incidence for four candidate wavelengths for use in the WAMDII. The model is for an LF5 thickness of 5.36908 cm, an LaF21 thickness of 6.00122 cm, and a vacuum gap in the LaF21 arm of 0.0382-cm thickness. The glass constants are from Table I.

Fig. 3
Fig. 3

Calculated variation of OPD relative to the value at 25° C as a function of temperature for three wavelengths. The model is the same as for Fig. 2.

Fig. 4
Fig. 4

One geometrical configuration for imaging through an unfolded Michelson interferometer; the camera lens is the aperture stop. B indicates the beam splitter (which is traversed twice) and M denotes the mirror.

Fig. 5
Fig. 5

The WAMDII configuration: the aperture stop S2 is located on the Michelson mirrors, and a field stop S1 is introduced in front of the MI.

Fig. 6
Fig. 6

Modeled dark electron rate for a theoretical RCA CCD based on a 30- × 30-μm active pixel size. The electron rate is normalized to a value of 1 nA/cm2 at 300 K.

Fig. 7
Fig. 7

Quantum efficiency vs wavelength for three different CCD devices.

Fig. 8
Fig. 8

The WAMDII developmental model and emission line source configuration used for laboratory tests.

Fig. 9
Fig. 9

Phase shift vs off-axis angle plotted as pixel number for one row of the CCD. The corresponding off-axis angles are also shown.

Fig. 10
Fig. 10

Stability test showing measured intensity for a fixed mirror position over two 7-min periods separated by 1 h.

Fig. 11
Fig. 11

Scene comprising four successive images of an auroral arc with 90° phase steps between each image.

Fig. 12
Fig. 12

Phase images of the aurora computed from Fig. 11 of a spectral lamp and of the difference which yields the true wind phase.

Tables (3)

Tables Icon

Table I Properties of the WAMDII Arm Glasses

Tables Icon

Table II Measured Instrument Visibility

Tables Icon

Table III Accuracy of the Phase Calibration (in Degrees)

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

B ( σ ) = B 0 exp [ 4 ln 2 ( σ σ 0 ) 2 / w 2 ] ,
I ( Δ ) = I 0 [ 1 + exp ( Q T Δ 2 ) cos 2 π σ 0 Δ ] ,
V = exp ( Q T Δ 2 ) = ( I max I min ) / ( I max + I min ) .
I = I 0 [ 1 + V cos ( 2 π σ 0 Δ ) ] .
σ = σ 0 ( 1 + υ / c ) ,
I = I 0 [ 1 + V cos ( 2 π σ 0 Δ + ϕ ) ] ,
ϕ = 2 π σ 0 Δ 0 υ / c .
I 1 = I 0 ( 1 + V cos ϕ ) ,
I 2 = I 0 ( 1 V sin ϕ ) ,
I 3 = I 0 ( 1 V cos ϕ ) ,
I 4 = I 0 ( 1 + V sin ϕ ) .
I 0 = ( I 1 + I 3 ) / 2 = ( I 2 + I 4 ) / 2 ,
V = [ ( I 1 I 3 ) 2 + ( I 4 I 2 ) 2 ] 1 / 2 / 2 I 0 ,
tan ϕ = ( I 4 I 2 ) / ( I 1 I 3 ) .
P = 2 n d cos θ .
P = 2 n 1 ( d 1 + d 0 ) cos θ 1 2 n 1 d 0 cos θ 1 + 2 n 2 d 2 cos θ 2 + 2 n 3 d 3 cos θ 3 .
d 0 tan θ 1 = d 2 tan θ 2 + d 3 tan θ 3 ,
d 0 / ( n 1 cos θ 1 ) = d 2 / ( n 2 cos θ 2 ) + d 3 / ( n 3 cos θ 3 ) .
P = 2 n 1 d 1 cos θ 1 + 2 n 2 d 2 cos θ 2 + 2 n 3 d 3 cos θ 3 .
Δ = P P = 2 n 1 d 1 cos θ 1 2 n 1 d 1 cos θ 1 + 2 n 2 d 2 cos θ 2 2 n 2 d 2 cos θ 2 + 2 n 3 d 3 cos θ 3 .
Δ = 2 ( n 3 d 3 cos θ 3 + n 2 d 2 cos θ 2 n 1 d 1 cos θ 1 ) .
Δ = 2 [ n 3 d 3 ( 1 sin 2 i / n 3 2 ) 1 / 2 + n 2 d 2 ( 1 sin 2 i / n 2 2 ) 1 / 2 n 1 d 1 ( 1 sin 2 i / n 1 2 ) 1 / 2 ] .
Δ / 2 = n 3 d 3 + n 2 d 2 n 1 d 1 sin 2 i 2 ( d 3 n 3 + d 2 n 2 d 1 n 1 ) sin 4 i 8 ( d 3 n 3 3 + d 2 n 2 3 d 1 n 1 3 )
d 3 / n 3 + d 2 / n 2 d 1 / n 1 = 0 .
w = d 3 / n 3 + d 2 / n 2 d 1 / n 1 .
d w d λ = d 3 n 3 2 d n 3 d λ d 2 n 2 2 d n 2 d λ + d 1 n 1 2 d n 1 d λ .
( d 2 / n 2 2 ) ( d n 2 / d λ ) = ( d 1 / n 1 2 ) ( d n 1 / d λ ) .
( 1 / n 1 ) d n 1 / d λ = ( 1 / n 2 ) d n 2 / d λ .
( 1 / n 1 ) d n 1 / d λ ( 1 / n 2 ) d n 2 / d λ = p .
d 3 / d 1 = ( n 2 / n 1 ) [ p / ( d n 2 / d λ ) ] .
d Δ 0 / d T = 2 ( n 2 δ d 2 / δ T + d 2 δ n 2 / δ T n 1 δ d 1 / δ T d 1 δ n 1 / δ T ) .
d Δ 0 d T = 2 n 1 d 1 [ ( n 2 n 1 ) 2 ( 1 δ d 2 d 2 δ T + 1 δ n 2 n 2 δ T ) ( 1 δ d 1 d 1 δ T + 1 δ n 1 n 1 δ T ) ] ,
n 1 2 ( 1 δ d 1 d 1 δ T + 1 δ n 1 n 1 δ T ) = n 2 2 ( 1 δ d 2 d 2 δ T + 1 δ n 2 n 2 δ T ) .
d 2 ( n 2 α 2 + β 2 ) = d 1 ( n 1 α 1 + β 1 ) where β = d n / d T .
A Ω = y 2 θ 2 / N 2 ,
y = D θ L .
A Ω = ( θ 2 N 2 ) ( D θ L ) 2 .
A Ω = D 4 / ( 16 N 2 L 2 ) .
A Ω = ( θ 2 / N 2 ) ( D θ L / 2 ) 2 ,
A Ω = D 4 / ( 4 N 2 L 2 ) .
J D J D ( 300 ) = A R 3 / 2 exp [ E g ( T ) / 2 k T ] ,
A = 3.644 × 10 5 K 3 / 2 , J D ( 300 ) = dark rate at 300 K ( nA / cm 2 ) , E g ( T ) = 1.1557 7.021 × 10 4 T 2 eV ( 1108 + T ) .
N rms ( reset ) = 400 C ( pF ) rms electrons .

Metrics