Abstract

This paper investigates the effects of an external electric field on hole-burning processes. The photoprocess for hole burning involves the transformation of chlorin (dihydroporphyrin) into its phototautomer. Two-dimensional representations (voltage/frequency) of the transmittance and the change in optical density are illustrated for single and multiple hole burning. At 4.2 K a hole width of 25 kV/cm in electric field scanning range and of 3 GHz (0.1 cm−1) in optical frequency was achieved. The increase in the data storage capacity for optical memory devices offered by the electrical field parameter is discussed.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Rebane, Impurity Spectra of Solids (Plenum, New York, 1970).
  2. J. Friedrich, J. D. Swalen, D. Haarer, “Electron-Phonon-Coupling in Amorphous Organic Host Matrices as investigated by Photochemical Hole Burning,” J. Chem. Phys. 73, 705 (1980).
    [Crossref]
  3. B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘Gap’ in Absorption Spectra of Solid Solutions of Organic Molecules by Laser Irradiation,” Opt. Commun. 12, 191 (1974).
    [Crossref]
  4. A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole Burning in the Contour of a Pure Electronic Line in a Shpolskii System,” JETP Lett. 20, 216 (1974).
  5. S. Völker, R. M. Macfarlane, A. Z. Genack, H. P. Trommsdorf, “Homogeneous Linewidth of the S1 ← S0 Transition of Free-Base Porphyrin in an n-Octane Crystal as studied by Photochemical Hole Burning,” J. Chem. Phys. 67, 1759 (1977).
    [Crossref]
  6. E. Cuellar, G. Castro, “Photochemical Nonphotochemical Hole Burning in Dimethyl-s-Tetrazine in a Polyvinyl Carbazole film,” Chem. Phys. 54, 217 (1981).
    [Crossref]
  7. S. Völker, R. M. Macfarlane, “Photochemical Hole Burning in Free-Base Porphyrin and Chlorin in n-Alkane Matrices,” IBM J. Res. Devel. 23, 547 (1979).
    [Crossref]
  8. A. I. M. Dicker, L. W. Johnson, M. Noort, J. H. van der Waals, “Stark Effect on the S1 ← S0 Transition of the Two Tautomeric Forms of Chlorin studied by Photochemical Hole Burning in n-Hexame and n-Octane Single Crystals at 1.2K,” Chem. Phys. Lett. 94, 14 (1983).
    [Crossref]
  9. W. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Stark Effect in Narrow Gaps in the Absorption Bands of Complex Molecules,” Opt. Spectrosc. (USSR) 52, 346 (1982).
  10. F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
    [Crossref]
  11. F. A. Burkhalter, “Photophysikalische Untersuchungen an synthetischen metallfreien Isobacteriochlorinen und an Chlorin,” Thesis ETH 7492 (1984).
  12. U. Bogner, P. Schätz, R. Seel, M. Maier, “Electric-Field-Induced Level Shifts of Perylene in Amorphous Solids determined by Persistent Hole-Burning Spectroscopy,” Chem. Phys. Lett. 102, 267 (1983).
    [Crossref]
  13. G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency Selective Optical Data Storage System,” U.S. Patent4.101.976 (1978).

1983 (3)

A. I. M. Dicker, L. W. Johnson, M. Noort, J. H. van der Waals, “Stark Effect on the S1 ← S0 Transition of the Two Tautomeric Forms of Chlorin studied by Photochemical Hole Burning in n-Hexame and n-Octane Single Crystals at 1.2K,” Chem. Phys. Lett. 94, 14 (1983).
[Crossref]

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

U. Bogner, P. Schätz, R. Seel, M. Maier, “Electric-Field-Induced Level Shifts of Perylene in Amorphous Solids determined by Persistent Hole-Burning Spectroscopy,” Chem. Phys. Lett. 102, 267 (1983).
[Crossref]

1982 (1)

W. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Stark Effect in Narrow Gaps in the Absorption Bands of Complex Molecules,” Opt. Spectrosc. (USSR) 52, 346 (1982).

1981 (1)

E. Cuellar, G. Castro, “Photochemical Nonphotochemical Hole Burning in Dimethyl-s-Tetrazine in a Polyvinyl Carbazole film,” Chem. Phys. 54, 217 (1981).
[Crossref]

1980 (1)

J. Friedrich, J. D. Swalen, D. Haarer, “Electron-Phonon-Coupling in Amorphous Organic Host Matrices as investigated by Photochemical Hole Burning,” J. Chem. Phys. 73, 705 (1980).
[Crossref]

1979 (1)

S. Völker, R. M. Macfarlane, “Photochemical Hole Burning in Free-Base Porphyrin and Chlorin in n-Alkane Matrices,” IBM J. Res. Devel. 23, 547 (1979).
[Crossref]

1977 (1)

S. Völker, R. M. Macfarlane, A. Z. Genack, H. P. Trommsdorf, “Homogeneous Linewidth of the S1 ← S0 Transition of Free-Base Porphyrin in an n-Octane Crystal as studied by Photochemical Hole Burning,” J. Chem. Phys. 67, 1759 (1977).
[Crossref]

1974 (2)

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘Gap’ in Absorption Spectra of Solid Solutions of Organic Molecules by Laser Irradiation,” Opt. Commun. 12, 191 (1974).
[Crossref]

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole Burning in the Contour of a Pure Electronic Line in a Shpolskii System,” JETP Lett. 20, 216 (1974).

Bogner, U.

U. Bogner, P. Schätz, R. Seel, M. Maier, “Electric-Field-Induced Level Shifts of Perylene in Amorphous Solids determined by Persistent Hole-Burning Spectroscopy,” Chem. Phys. Lett. 102, 267 (1983).
[Crossref]

Burkhalter, F. A.

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

F. A. Burkhalter, “Photophysikalische Untersuchungen an synthetischen metallfreien Isobacteriochlorinen und an Chlorin,” Thesis ETH 7492 (1984).

Bykovskaya, L. A.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘Gap’ in Absorption Spectra of Solid Solutions of Organic Molecules by Laser Irradiation,” Opt. Commun. 12, 191 (1974).
[Crossref]

Castro, G.

E. Cuellar, G. Castro, “Photochemical Nonphotochemical Hole Burning in Dimethyl-s-Tetrazine in a Polyvinyl Carbazole film,” Chem. Phys. 54, 217 (1981).
[Crossref]

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency Selective Optical Data Storage System,” U.S. Patent4.101.976 (1978).

Cuellar, E.

E. Cuellar, G. Castro, “Photochemical Nonphotochemical Hole Burning in Dimethyl-s-Tetrazine in a Polyvinyl Carbazole film,” Chem. Phys. 54, 217 (1981).
[Crossref]

Dicker, A. I. M.

A. I. M. Dicker, L. W. Johnson, M. Noort, J. H. van der Waals, “Stark Effect on the S1 ← S0 Transition of the Two Tautomeric Forms of Chlorin studied by Photochemical Hole Burning in n-Hexame and n-Octane Single Crystals at 1.2K,” Chem. Phys. Lett. 94, 14 (1983).
[Crossref]

Friedrich, J.

J. Friedrich, J. D. Swalen, D. Haarer, “Electron-Phonon-Coupling in Amorphous Organic Host Matrices as investigated by Photochemical Hole Burning,” J. Chem. Phys. 73, 705 (1980).
[Crossref]

Genack, A. Z.

S. Völker, R. M. Macfarlane, A. Z. Genack, H. P. Trommsdorf, “Homogeneous Linewidth of the S1 ← S0 Transition of Free-Base Porphyrin in an n-Octane Crystal as studied by Photochemical Hole Burning,” J. Chem. Phys. 67, 1759 (1977).
[Crossref]

Gorokhovskii, A. A.

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole Burning in the Contour of a Pure Electronic Line in a Shpolskii System,” JETP Lett. 20, 216 (1974).

Haarer, D.

J. Friedrich, J. D. Swalen, D. Haarer, “Electron-Phonon-Coupling in Amorphous Organic Host Matrices as investigated by Photochemical Hole Burning,” J. Chem. Phys. 73, 705 (1980).
[Crossref]

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency Selective Optical Data Storage System,” U.S. Patent4.101.976 (1978).

Johnson, L. W.

A. I. M. Dicker, L. W. Johnson, M. Noort, J. H. van der Waals, “Stark Effect on the S1 ← S0 Transition of the Two Tautomeric Forms of Chlorin studied by Photochemical Hole Burning in n-Hexame and n-Octane Single Crystals at 1.2K,” Chem. Phys. Lett. 94, 14 (1983).
[Crossref]

Kaarli, R. K.

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole Burning in the Contour of a Pure Electronic Line in a Shpolskii System,” JETP Lett. 20, 216 (1974).

Kharlamov, B. M.

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘Gap’ in Absorption Spectra of Solid Solutions of Organic Molecules by Laser Irradiation,” Opt. Commun. 12, 191 (1974).
[Crossref]

Macfarlane, R. M.

S. Völker, R. M. Macfarlane, “Photochemical Hole Burning in Free-Base Porphyrin and Chlorin in n-Alkane Matrices,” IBM J. Res. Devel. 23, 547 (1979).
[Crossref]

S. Völker, R. M. Macfarlane, A. Z. Genack, H. P. Trommsdorf, “Homogeneous Linewidth of the S1 ← S0 Transition of Free-Base Porphyrin in an n-Octane Crystal as studied by Photochemical Hole Burning,” J. Chem. Phys. 67, 1759 (1977).
[Crossref]

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency Selective Optical Data Storage System,” U.S. Patent4.101.976 (1978).

Maier, M.

U. Bogner, P. Schätz, R. Seel, M. Maier, “Electric-Field-Induced Level Shifts of Perylene in Amorphous Solids determined by Persistent Hole-Burning Spectroscopy,” Chem. Phys. Lett. 102, 267 (1983).
[Crossref]

Noort, M.

A. I. M. Dicker, L. W. Johnson, M. Noort, J. H. van der Waals, “Stark Effect on the S1 ← S0 Transition of the Two Tautomeric Forms of Chlorin studied by Photochemical Hole Burning in n-Hexame and n-Octane Single Crystals at 1.2K,” Chem. Phys. Lett. 94, 14 (1983).
[Crossref]

Personov, R. I.

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

W. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Stark Effect in Narrow Gaps in the Absorption Bands of Complex Molecules,” Opt. Spectrosc. (USSR) 52, 346 (1982).

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘Gap’ in Absorption Spectra of Solid Solutions of Organic Molecules by Laser Irradiation,” Opt. Commun. 12, 191 (1974).
[Crossref]

Rasumova, N. V.

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

W. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Stark Effect in Narrow Gaps in the Absorption Bands of Complex Molecules,” Opt. Spectrosc. (USSR) 52, 346 (1982).

Rebane, K. K.

K. K. Rebane, Impurity Spectra of Solids (Plenum, New York, 1970).

Rebane, L. A.

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole Burning in the Contour of a Pure Electronic Line in a Shpolskii System,” JETP Lett. 20, 216 (1974).

Samoilenko, V. D.

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

Samoilenko, W. D.

W. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Stark Effect in Narrow Gaps in the Absorption Bands of Complex Molecules,” Opt. Spectrosc. (USSR) 52, 346 (1982).

Schätz, P.

U. Bogner, P. Schätz, R. Seel, M. Maier, “Electric-Field-Induced Level Shifts of Perylene in Amorphous Solids determined by Persistent Hole-Burning Spectroscopy,” Chem. Phys. Lett. 102, 267 (1983).
[Crossref]

Seel, R.

U. Bogner, P. Schätz, R. Seel, M. Maier, “Electric-Field-Induced Level Shifts of Perylene in Amorphous Solids determined by Persistent Hole-Burning Spectroscopy,” Chem. Phys. Lett. 102, 267 (1983).
[Crossref]

Suter, G. W.

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

Swalen, J. D.

J. Friedrich, J. D. Swalen, D. Haarer, “Electron-Phonon-Coupling in Amorphous Organic Host Matrices as investigated by Photochemical Hole Burning,” J. Chem. Phys. 73, 705 (1980).
[Crossref]

Trommsdorf, H. P.

S. Völker, R. M. Macfarlane, A. Z. Genack, H. P. Trommsdorf, “Homogeneous Linewidth of the S1 ← S0 Transition of Free-Base Porphyrin in an n-Octane Crystal as studied by Photochemical Hole Burning,” J. Chem. Phys. 67, 1759 (1977).
[Crossref]

Trommsdorff, H. P.

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency Selective Optical Data Storage System,” U.S. Patent4.101.976 (1978).

van der Waals, J. H.

A. I. M. Dicker, L. W. Johnson, M. Noort, J. H. van der Waals, “Stark Effect on the S1 ← S0 Transition of the Two Tautomeric Forms of Chlorin studied by Photochemical Hole Burning in n-Hexame and n-Octane Single Crystals at 1.2K,” Chem. Phys. Lett. 94, 14 (1983).
[Crossref]

Völker, S.

S. Völker, R. M. Macfarlane, “Photochemical Hole Burning in Free-Base Porphyrin and Chlorin in n-Alkane Matrices,” IBM J. Res. Devel. 23, 547 (1979).
[Crossref]

S. Völker, R. M. Macfarlane, A. Z. Genack, H. P. Trommsdorf, “Homogeneous Linewidth of the S1 ← S0 Transition of Free-Base Porphyrin in an n-Octane Crystal as studied by Photochemical Hole Burning,” J. Chem. Phys. 67, 1759 (1977).
[Crossref]

Wild, U. P.

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

Chem. Phys. (1)

E. Cuellar, G. Castro, “Photochemical Nonphotochemical Hole Burning in Dimethyl-s-Tetrazine in a Polyvinyl Carbazole film,” Chem. Phys. 54, 217 (1981).
[Crossref]

Chem. Phys. Lett. (3)

A. I. M. Dicker, L. W. Johnson, M. Noort, J. H. van der Waals, “Stark Effect on the S1 ← S0 Transition of the Two Tautomeric Forms of Chlorin studied by Photochemical Hole Burning in n-Hexame and n-Octane Single Crystals at 1.2K,” Chem. Phys. Lett. 94, 14 (1983).
[Crossref]

F. A. Burkhalter, G. W. Suter, U. P. Wild, V. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Hole Burning in the Absorption Spectra of Chlorin in Polymer films: Stark Effect and Temperature Dependence,” Chem. Phys. Lett. 94, 483 (1983).
[Crossref]

U. Bogner, P. Schätz, R. Seel, M. Maier, “Electric-Field-Induced Level Shifts of Perylene in Amorphous Solids determined by Persistent Hole-Burning Spectroscopy,” Chem. Phys. Lett. 102, 267 (1983).
[Crossref]

IBM J. Res. Devel. (1)

S. Völker, R. M. Macfarlane, “Photochemical Hole Burning in Free-Base Porphyrin and Chlorin in n-Alkane Matrices,” IBM J. Res. Devel. 23, 547 (1979).
[Crossref]

J. Chem. Phys. (2)

J. Friedrich, J. D. Swalen, D. Haarer, “Electron-Phonon-Coupling in Amorphous Organic Host Matrices as investigated by Photochemical Hole Burning,” J. Chem. Phys. 73, 705 (1980).
[Crossref]

S. Völker, R. M. Macfarlane, A. Z. Genack, H. P. Trommsdorf, “Homogeneous Linewidth of the S1 ← S0 Transition of Free-Base Porphyrin in an n-Octane Crystal as studied by Photochemical Hole Burning,” J. Chem. Phys. 67, 1759 (1977).
[Crossref]

JETP Lett. (1)

A. A. Gorokhovskii, R. K. Kaarli, L. A. Rebane, “Hole Burning in the Contour of a Pure Electronic Line in a Shpolskii System,” JETP Lett. 20, 216 (1974).

Opt. Commun. (1)

B. M. Kharlamov, R. I. Personov, L. A. Bykovskaya, “Stable ‘Gap’ in Absorption Spectra of Solid Solutions of Organic Molecules by Laser Irradiation,” Opt. Commun. 12, 191 (1974).
[Crossref]

Opt. Spectrosc. (USSR) (1)

W. D. Samoilenko, N. V. Rasumova, R. I. Personov, “Stark Effect in Narrow Gaps in the Absorption Bands of Complex Molecules,” Opt. Spectrosc. (USSR) 52, 346 (1982).

Other (3)

K. K. Rebane, Impurity Spectra of Solids (Plenum, New York, 1970).

G. Castro, D. Haarer, R. M. Macfarlane, H. P. Trommsdorff, “Frequency Selective Optical Data Storage System,” U.S. Patent4.101.976 (1978).

F. A. Burkhalter, “Photophysikalische Untersuchungen an synthetischen metallfreien Isobacteriochlorinen und an Chlorin,” Thesis ETH 7492 (1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of spectral hole burning: (A) Spectral profile of the overall absorption band for all sites; (B) absorption lines of individual sites; (C) removal of one site by hole burning; (D) hole dip after burning.

Fig. 2
Fig. 2

Photochemical reaction used for hole burning experiments.

Fig. 3
Fig. 3

Transmittance of chlorin at 4.2 K as a function of both applied voltage and probing laser frequency. The hole was burnt for 10 sec using 500-μW/cm2 laser power at 630 nm. The full scan range of 30 GHz corresponds to 1 cm−1 or 0.04 nm.

Fig. 4
Fig. 4

Contour plot of the change in optical density after hole burning. The peak represents a change in optical density of −0.3 units.

Fig. 5
Fig. 5

Dependence of transmittance of chlorin as a function of the applied voltage under constant laser frequency conditions. The data are taken from Figs. 3 and 4.

Fig. 6
Fig. 6

Dependence of transmittance of chlorin as a function of probing laser frequency under constant applied voltage conditions. The data are taken from Figs. 3 and 4.

Fig. 7
Fig. 7

Transmittance profiles of six holes. All holes were burnt for 8 sec using 500-μW/cm2 laser power.

Fig. 8
Fig. 8

Contour plot of the change in optical density after multiple hole burning.

Metrics