Abstract

A variable linewidth high-power TEA CO2 laser, utilizing a multiple-prism beam expander in conjunction with a Littrow-mounted grating, is described. Linewidths of ∼250-MHz (FWHM) at a total output energy exceeding 250 mJ have been obtained at the P20 (00°1—10°0), λ = 10.59-μm line. Laser linewidths can be varied continuously in the 250–650-MHz range for a corresponding change in output energy from 250 to 400 mJ. The present frequency selectivity method, which employs ZnSe prisms, can be applied directly to considerably higher-power CO2 lasers.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Weiss, L. S. Goldberg, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” ” IEEE J. Quantum Electron. QE-8, 757 (1972).
    [CrossRef]
  2. C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974).
    [CrossRef]
  3. P. Mathieu, J. R. Izatt, “Narrow-Band CO2-TEA Laser for Efficient FIR Laser Pumping,” IEEE J. Quantum Electron. QE-13, 465 (1977).
    [CrossRef]
  4. J. P. Nicholson, K. S. Lipton, “A Tunable Stabilized Single-Mode TEA CO2 Laser,” Appl. Phys. Lett. 31, 430 (1977).
    [CrossRef]
  5. N. Lee, R. L. Aggarwal, “Single Longitudinal Mode TEA CO2 Laser with Tilted Intracavity Etalon,” Appl. Opt. 16, 2620 (1977).
    [CrossRef] [PubMed]
  6. P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
    [CrossRef]
  7. P. Bernard, P. Mathieu, J. R. Izatt, “Fine Frequency Tuning of High Power TEA CO2 Lasers,” Opt. Commun. 37, 285 (1981).
    [CrossRef]
  8. A. Girard, “The Effects of the Insertion of a CW, Low-Pressure CO2 Laser into a TEA CO2 Laser Cavity,” Opt. Commun. 11, 346 (1974).
    [CrossRef]
  9. A. Gondhalekar, N. R. Heckenberg, E. Holzhauer, “The Mechanism of Single-Frequency Operation of the Hybrid-CO2 Laser,” IEEE J. Quantum Electron. QE-11, 103 (1975).
    [CrossRef]
  10. J. R. Izatt, C. J. Budhiraja, P. Mathieu, “Single-Mode TEA-CO2 Injection Laser,” IEEE J. Quantum Electron. QE-13, 396 (1977).
    [CrossRef]
  11. R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.
  12. A. J. Alcock, K. Leopold, M. C. Richardson, “Continuously Tunable High-Pressure CO2 Laser with UV Photopreionization,” Appl. Phys. Lett. 23, 562 (1973).
    [CrossRef]
  13. F. J. Duarte, J. A. Piper, “A Double-Prism Beam Expander for Pulsed Dye Lasers,” Opt. Commun. 35, 100 (1980).
    [CrossRef]
  14. F. J. Duarte, J. A. Piper, “Prism Preexpanded Grazing-Incidence Grating Cavity for Pulsed Dye Lasers,” Appl. Opt. 20, 2113 (1981).
    [CrossRef] [PubMed]
  15. F. J. Duarte, J. A. Piper, “Dispersion Theory of Multiple-Prism Beam Expanders for Pulsed Dye Lasers,” Opt. Commun. 43, 303 (1982).
    [CrossRef]
  16. W. G. Driscoll, Ed., Handbook of Optics (McGraw-Hill, New York, 1978).
  17. The low finesse of the etalon plates may introduce some uncertainty in the linewidth measurements (by a factor of 1.5–2 at the worst). However, at the optimum configuration, laser action was restricted to a double mode pattern (with mode separation of 85 MHz) thus indicating that quoted linewidths are consistent with observed temporal behavior.
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).
  19. II–VI, Inc.; private communication.
  20. F. J. Duarte, J. A. Piper, “Multi-Pass Dispersion Theory of Prismatic Pulsed Dye Lasers,” Opt. Acta 31, 331 (1984).
    [CrossRef]
  21. F. J. Duarte, J. A. Piper, “Narrow Linewidth, High prf Copper Laser-Pumped Dye-Laser Oscillators,” Appl. Opt. 23, 1391 (1984).
    [CrossRef] [PubMed]

1984

F. J. Duarte, J. A. Piper, “Multi-Pass Dispersion Theory of Prismatic Pulsed Dye Lasers,” Opt. Acta 31, 331 (1984).
[CrossRef]

F. J. Duarte, J. A. Piper, “Narrow Linewidth, High prf Copper Laser-Pumped Dye-Laser Oscillators,” Appl. Opt. 23, 1391 (1984).
[CrossRef] [PubMed]

1982

F. J. Duarte, J. A. Piper, “Dispersion Theory of Multiple-Prism Beam Expanders for Pulsed Dye Lasers,” Opt. Commun. 43, 303 (1982).
[CrossRef]

1981

F. J. Duarte, J. A. Piper, “Prism Preexpanded Grazing-Incidence Grating Cavity for Pulsed Dye Lasers,” Appl. Opt. 20, 2113 (1981).
[CrossRef] [PubMed]

P. Bernard, P. Mathieu, J. R. Izatt, “Fine Frequency Tuning of High Power TEA CO2 Lasers,” Opt. Commun. 37, 285 (1981).
[CrossRef]

1980

F. J. Duarte, J. A. Piper, “A Double-Prism Beam Expander for Pulsed Dye Lasers,” Opt. Commun. 35, 100 (1980).
[CrossRef]

1979

P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
[CrossRef]

1977

J. R. Izatt, C. J. Budhiraja, P. Mathieu, “Single-Mode TEA-CO2 Injection Laser,” IEEE J. Quantum Electron. QE-13, 396 (1977).
[CrossRef]

N. Lee, R. L. Aggarwal, “Single Longitudinal Mode TEA CO2 Laser with Tilted Intracavity Etalon,” Appl. Opt. 16, 2620 (1977).
[CrossRef] [PubMed]

P. Mathieu, J. R. Izatt, “Narrow-Band CO2-TEA Laser for Efficient FIR Laser Pumping,” IEEE J. Quantum Electron. QE-13, 465 (1977).
[CrossRef]

J. P. Nicholson, K. S. Lipton, “A Tunable Stabilized Single-Mode TEA CO2 Laser,” Appl. Phys. Lett. 31, 430 (1977).
[CrossRef]

1975

A. Gondhalekar, N. R. Heckenberg, E. Holzhauer, “The Mechanism of Single-Frequency Operation of the Hybrid-CO2 Laser,” IEEE J. Quantum Electron. QE-11, 103 (1975).
[CrossRef]

1974

A. Girard, “The Effects of the Insertion of a CW, Low-Pressure CO2 Laser into a TEA CO2 Laser Cavity,” Opt. Commun. 11, 346 (1974).
[CrossRef]

C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974).
[CrossRef]

1973

A. J. Alcock, K. Leopold, M. C. Richardson, “Continuously Tunable High-Pressure CO2 Laser with UV Photopreionization,” Appl. Phys. Lett. 23, 562 (1973).
[CrossRef]

1972

J. A. Weiss, L. S. Goldberg, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” ” IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

Aggarwal, R. L.

Alcock, A. J.

A. J. Alcock, K. Leopold, M. C. Richardson, “Continuously Tunable High-Pressure CO2 Laser with UV Photopreionization,” Appl. Phys. Lett. 23, 562 (1973).
[CrossRef]

Bernard, P.

P. Bernard, P. Mathieu, J. R. Izatt, “Fine Frequency Tuning of High Power TEA CO2 Lasers,” Opt. Commun. 37, 285 (1981).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Budhiraja, C. J.

J. R. Izatt, C. J. Budhiraja, P. Mathieu, “Single-Mode TEA-CO2 Injection Laser,” IEEE J. Quantum Electron. QE-13, 396 (1977).
[CrossRef]

Cohn, D. R.

P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
[CrossRef]

Duarte, F. J.

F. J. Duarte, J. A. Piper, “Narrow Linewidth, High prf Copper Laser-Pumped Dye-Laser Oscillators,” Appl. Opt. 23, 1391 (1984).
[CrossRef] [PubMed]

F. J. Duarte, J. A. Piper, “Multi-Pass Dispersion Theory of Prismatic Pulsed Dye Lasers,” Opt. Acta 31, 331 (1984).
[CrossRef]

F. J. Duarte, J. A. Piper, “Dispersion Theory of Multiple-Prism Beam Expanders for Pulsed Dye Lasers,” Opt. Commun. 43, 303 (1982).
[CrossRef]

F. J. Duarte, J. A. Piper, “Prism Preexpanded Grazing-Incidence Grating Cavity for Pulsed Dye Lasers,” Appl. Opt. 20, 2113 (1981).
[CrossRef] [PubMed]

F. J. Duarte, J. A. Piper, “A Double-Prism Beam Expander for Pulsed Dye Lasers,” Opt. Commun. 35, 100 (1980).
[CrossRef]

Firth, W. J.

R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.

Girard, A.

A. Girard, “The Effects of the Insertion of a CW, Low-Pressure CO2 Laser into a TEA CO2 Laser Cavity,” Opt. Commun. 11, 346 (1974).
[CrossRef]

Goldberg, L. S.

J. A. Weiss, L. S. Goldberg, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” ” IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

Gondhalekar, A.

A. Gondhalekar, N. R. Heckenberg, E. Holzhauer, “The Mechanism of Single-Frequency Operation of the Hybrid-CO2 Laser,” IEEE J. Quantum Electron. QE-11, 103 (1975).
[CrossRef]

Hammond, C. R.

C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974).
[CrossRef]

Harrison, R. G.

R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.

Heckenberg, N. R.

A. Gondhalekar, N. R. Heckenberg, E. Holzhauer, “The Mechanism of Single-Frequency Operation of the Hybrid-CO2 Laser,” IEEE J. Quantum Electron. QE-11, 103 (1975).
[CrossRef]

Holzhauer, E.

A. Gondhalekar, N. R. Heckenberg, E. Holzhauer, “The Mechanism of Single-Frequency Operation of the Hybrid-CO2 Laser,” IEEE J. Quantum Electron. QE-11, 103 (1975).
[CrossRef]

Izatt, J. R.

P. Bernard, P. Mathieu, J. R. Izatt, “Fine Frequency Tuning of High Power TEA CO2 Lasers,” Opt. Commun. 37, 285 (1981).
[CrossRef]

P. Mathieu, J. R. Izatt, “Narrow-Band CO2-TEA Laser for Efficient FIR Laser Pumping,” IEEE J. Quantum Electron. QE-13, 465 (1977).
[CrossRef]

J. R. Izatt, C. J. Budhiraja, P. Mathieu, “Single-Mode TEA-CO2 Injection Laser,” IEEE J. Quantum Electron. QE-13, 396 (1977).
[CrossRef]

Juyal, D. P.

C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974).
[CrossRef]

Kar, A. K.

R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.

Lax, B.

P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
[CrossRef]

Lee, N.

Leopold, K.

A. J. Alcock, K. Leopold, M. C. Richardson, “Continuously Tunable High-Pressure CO2 Laser with UV Photopreionization,” Appl. Phys. Lett. 23, 562 (1973).
[CrossRef]

Lipton, K. S.

J. P. Nicholson, K. S. Lipton, “A Tunable Stabilized Single-Mode TEA CO2 Laser,” Appl. Phys. Lett. 31, 430 (1977).
[CrossRef]

Mathieu, P.

P. Bernard, P. Mathieu, J. R. Izatt, “Fine Frequency Tuning of High Power TEA CO2 Lasers,” Opt. Commun. 37, 285 (1981).
[CrossRef]

P. Mathieu, J. R. Izatt, “Narrow-Band CO2-TEA Laser for Efficient FIR Laser Pumping,” IEEE J. Quantum Electron. QE-13, 465 (1977).
[CrossRef]

J. R. Izatt, C. J. Budhiraja, P. Mathieu, “Single-Mode TEA-CO2 Injection Laser,” IEEE J. Quantum Electron. QE-13, 396 (1977).
[CrossRef]

Mulligan, W. J.

P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
[CrossRef]

Nicholson, J. P.

J. P. Nicholson, K. S. Lipton, “A Tunable Stabilized Single-Mode TEA CO2 Laser,” Appl. Phys. Lett. 31, 430 (1977).
[CrossRef]

Piper, J. A.

F. J. Duarte, J. A. Piper, “Narrow Linewidth, High prf Copper Laser-Pumped Dye-Laser Oscillators,” Appl. Opt. 23, 1391 (1984).
[CrossRef] [PubMed]

F. J. Duarte, J. A. Piper, “Multi-Pass Dispersion Theory of Prismatic Pulsed Dye Lasers,” Opt. Acta 31, 331 (1984).
[CrossRef]

F. J. Duarte, J. A. Piper, “Dispersion Theory of Multiple-Prism Beam Expanders for Pulsed Dye Lasers,” Opt. Commun. 43, 303 (1982).
[CrossRef]

F. J. Duarte, J. A. Piper, “Prism Preexpanded Grazing-Incidence Grating Cavity for Pulsed Dye Lasers,” Appl. Opt. 20, 2113 (1981).
[CrossRef] [PubMed]

F. J. Duarte, J. A. Piper, “A Double-Prism Beam Expander for Pulsed Dye Lasers,” Opt. Commun. 35, 100 (1980).
[CrossRef]

Praddaude, H. C.

P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
[CrossRef]

Richardson, M. C.

A. J. Alcock, K. Leopold, M. C. Richardson, “Continuously Tunable High-Pressure CO2 Laser with UV Photopreionization,” Appl. Phys. Lett. 23, 562 (1973).
[CrossRef]

Smith, S. D.

R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.

Thomas, G. C.

C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974).
[CrossRef]

Tratt, D. M.

R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.

Weiss, J. A.

J. A. Weiss, L. S. Goldberg, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” ” IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

Woskoboinikow, P.

P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
[CrossRef]

Wright, E. M.

R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.

Zembrod, A.

C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. P. Nicholson, K. S. Lipton, “A Tunable Stabilized Single-Mode TEA CO2 Laser,” Appl. Phys. Lett. 31, 430 (1977).
[CrossRef]

A. J. Alcock, K. Leopold, M. C. Richardson, “Continuously Tunable High-Pressure CO2 Laser with UV Photopreionization,” Appl. Phys. Lett. 23, 562 (1973).
[CrossRef]

IEEE J. Quantum Electron.

J. A. Weiss, L. S. Goldberg, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” ” IEEE J. Quantum Electron. QE-8, 757 (1972).
[CrossRef]

A. Gondhalekar, N. R. Heckenberg, E. Holzhauer, “The Mechanism of Single-Frequency Operation of the Hybrid-CO2 Laser,” IEEE J. Quantum Electron. QE-11, 103 (1975).
[CrossRef]

J. R. Izatt, C. J. Budhiraja, P. Mathieu, “Single-Mode TEA-CO2 Injection Laser,” IEEE J. Quantum Electron. QE-13, 396 (1977).
[CrossRef]

P. Mathieu, J. R. Izatt, “Narrow-Band CO2-TEA Laser for Efficient FIR Laser Pumping,” IEEE J. Quantum Electron. QE-13, 465 (1977).
[CrossRef]

J. Appl. Phys.

P. Woskoboinikow, H. C. Praddaude, W. J. Mulligan, D. R. Cohn, B. Lax, “High-Power Tunable 385-μm D2O Vapor Laser Optically Pumped with a Single-Mode Tunable CO2 TEA Laser,” J. Appl. Phys. 50, 1125 (1979).
[CrossRef]

J. Phys. E: Sci. Instrum.

C. R. Hammond, D. P. Juyal, G. C. Thomas, A. Zembrod, “Single Longitudinal Mode Operation of a Transversely Excited CO2 Laser,” J. Phys. E: Sci. Instrum. 7, 45 (1974).
[CrossRef]

Opt. Acta

F. J. Duarte, J. A. Piper, “Multi-Pass Dispersion Theory of Prismatic Pulsed Dye Lasers,” Opt. Acta 31, 331 (1984).
[CrossRef]

Opt. Commun.

F. J. Duarte, J. A. Piper, “Dispersion Theory of Multiple-Prism Beam Expanders for Pulsed Dye Lasers,” Opt. Commun. 43, 303 (1982).
[CrossRef]

F. J. Duarte, J. A. Piper, “A Double-Prism Beam Expander for Pulsed Dye Lasers,” Opt. Commun. 35, 100 (1980).
[CrossRef]

P. Bernard, P. Mathieu, J. R. Izatt, “Fine Frequency Tuning of High Power TEA CO2 Lasers,” Opt. Commun. 37, 285 (1981).
[CrossRef]

A. Girard, “The Effects of the Insertion of a CW, Low-Pressure CO2 Laser into a TEA CO2 Laser Cavity,” Opt. Commun. 11, 346 (1974).
[CrossRef]

Other

R. G. Harrison, A. K. Kar, D. M. Tratt, E. M. Wright, W. J. Firth, S. D. Smith, “Longitudinal Mode Selection in TEA CO2 Lasers by Injection Locking,” in Proceedings, International Conference on Lasers '82, R. C. Powell, Ed. (STS Press, McLean, Va., 1982), p. 627.

W. G. Driscoll, Ed., Handbook of Optics (McGraw-Hill, New York, 1978).

The low finesse of the etalon plates may introduce some uncertainty in the linewidth measurements (by a factor of 1.5–2 at the worst). However, at the optimum configuration, laser action was restricted to a double mode pattern (with mode separation of 85 MHz) thus indicating that quoted linewidths are consistent with observed temporal behavior.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1975).

II–VI, Inc.; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the multiple-prism TEA CO2 laser.

Fig. 2
Fig. 2

Output laser energy at 10.59 μm (40-nsec pulses FWHM) as a function of linewidth.

Fig. 3
Fig. 3

Laser linewidth as a function of overall intracavity beam expansion (M).

Fig. 4
Fig. 4

Two typical interferograms showing time averaged linewidths (see text). Output energy fluctuations (not shown) were 5–10%.

Fig. 5
Fig. 5

Temporal shape of a laser pulse for Δv ≃ 200 MHz (20 nsec/div) demonstrating double mode operation. Lc = 175 cm which corresponds to a longitudinal mode separation of 85 MHz.

Fig. 6
Fig. 6

Output laser energy at 10.59 μm as a function of grating micrometer position (see text).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R p = tan 2 ( ϕ 1 ψ 1 ) tan 2 ( ϕ 1 + ψ 1 ) ,
R T = R p 1 + ( 1 R p 1 ) R p 2 .
Δ λ = Δ θ [ K r ( d θ d λ ) G + 2 tan ψ 1 m = 1 r ( ± 1 ) m 1 K m d n d λ ] 1 ,

Metrics