Abstract

Presented here are preliminary results of measurements of atmospheric water-vapor profiles which were obtained by use of a solar blind Raman lidar. Interesting new features of the data gathered include high spatial resolution during daylight hours along with associated measurement errors.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Cooney, K. Petri, “A Solar Blind Raman Lidar,” in Proceedings, Ninth International Laser Radar Conference (American Meteorological Society, Boston, 1979).
  2. K. Petri, A. Salik, J. A. Cooney, “Variable-Wavelength Solar-Blind Raman Lidar for Remote Measurement of Atmospheric Water-Vapor Concentration and Temperature,” Appl. Opt. 21, 1212 (1982).
    [CrossRef] [PubMed]
  3. D. Renaut, J. C. Pourny, R. Capitini, “Daytime Raman-Lidar Measurements of Water Vapor,” Opt. Lett. 5, 233 (1980).
    [CrossRef] [PubMed]
  4. M. Werst, “Anomalous RF Propagation Effects in an Ocean Environment,” Naval Air Development Center Report NADC-79087-30 (12Jan.1980).
  5. R. M. Schotland, in Proceedings, Third Symposium on Remote Sensing (Environmental Research Institute of Michigan, Ann Arbor, 1964).
  6. J. Cooney, “Remote Measurement of Atmospheric Water Vapor Profiles Using the Raman Component of Laser Backscatter,” J. Appl. Meteorol. 9, 182 (1970).
    [CrossRef]
  7. J. A. Lane, “Small Scale Variations of Radio Refractive Index in the Troposphere,” Proc. IEE 115, No. 9 (Sept.1968).
  8. J. C. Pourny, D. Renaut, A. G. Orszag, “Raman-Lidar Humidity Sounding of the Atmospheric Boundary-Layer,” Appl. Opt. 18, 1141 (1979).
    [CrossRef] [PubMed]

1982 (1)

1980 (1)

1979 (1)

1970 (1)

J. Cooney, “Remote Measurement of Atmospheric Water Vapor Profiles Using the Raman Component of Laser Backscatter,” J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

1968 (1)

J. A. Lane, “Small Scale Variations of Radio Refractive Index in the Troposphere,” Proc. IEE 115, No. 9 (Sept.1968).

Capitini, R.

Cooney, J.

J. Cooney, “Remote Measurement of Atmospheric Water Vapor Profiles Using the Raman Component of Laser Backscatter,” J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

J. Cooney, K. Petri, “A Solar Blind Raman Lidar,” in Proceedings, Ninth International Laser Radar Conference (American Meteorological Society, Boston, 1979).

Cooney, J. A.

Lane, J. A.

J. A. Lane, “Small Scale Variations of Radio Refractive Index in the Troposphere,” Proc. IEE 115, No. 9 (Sept.1968).

Orszag, A. G.

Petri, K.

K. Petri, A. Salik, J. A. Cooney, “Variable-Wavelength Solar-Blind Raman Lidar for Remote Measurement of Atmospheric Water-Vapor Concentration and Temperature,” Appl. Opt. 21, 1212 (1982).
[CrossRef] [PubMed]

J. Cooney, K. Petri, “A Solar Blind Raman Lidar,” in Proceedings, Ninth International Laser Radar Conference (American Meteorological Society, Boston, 1979).

Pourny, J. C.

Renaut, D.

Salik, A.

Schotland, R. M.

R. M. Schotland, in Proceedings, Third Symposium on Remote Sensing (Environmental Research Institute of Michigan, Ann Arbor, 1964).

Werst, M.

M. Werst, “Anomalous RF Propagation Effects in an Ocean Environment,” Naval Air Development Center Report NADC-79087-30 (12Jan.1980).

Appl. Opt. (2)

J. Appl. Meteorol. (1)

J. Cooney, “Remote Measurement of Atmospheric Water Vapor Profiles Using the Raman Component of Laser Backscatter,” J. Appl. Meteorol. 9, 182 (1970).
[CrossRef]

Opt. Lett. (1)

Proc. IEE (1)

J. A. Lane, “Small Scale Variations of Radio Refractive Index in the Troposphere,” Proc. IEE 115, No. 9 (Sept.1968).

Other (3)

J. Cooney, K. Petri, “A Solar Blind Raman Lidar,” in Proceedings, Ninth International Laser Radar Conference (American Meteorological Society, Boston, 1979).

M. Werst, “Anomalous RF Propagation Effects in an Ocean Environment,” Naval Air Development Center Report NADC-79087-30 (12Jan.1980).

R. M. Schotland, in Proceedings, Third Symposium on Remote Sensing (Environmental Research Institute of Michigan, Ann Arbor, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Lidar water-vapor profile (solid line) taken 29 Sept. superimposed on the radiosonde profile for comparison. The curve on the right is the statistical uncertainty in percent associated with the lidar curve.

Fig. 2
Fig. 2

Same data as in Fig. 1, however, with a very high spatial resolution of 5.0 m in contrast with 120.0-m spatial resolution of the range averaged data exemplified in Fig. 1. Due to background noise as the limiting noise source, the uncertainty is approximately equal to data in Fig. 1.

Fig. 3
Fig. 3

Range averaged lidar data from 27 Sept. with 120.0-m spatial resolution, similar to the boundary layer water-vapor profile shown in Fig. 1.

Fig. 4
Fig. 4

Same profile as in Fig. 3 (27 Sept.). Here, however, as in Fig. 2, there is very high resolution data with a 5.0-m resolution but showing the pronounced oscillatory data described in the text.

Fig. 5
Fig. 5

Cumulative or running histogram of a distribution of photocounts. The abscissa is given in g/kg H2O vapor. The ordinate is the frequency distribution from a height of 555 m with a 3.0-m altitude interval.

Fig. 6
Fig. 6

Unlike the data in Fig. 5, this frequency distribution does not gather around a specific value. This frequency distribution varies over a wide span of values of water-vapor content. It represents data at 250-m altitude from a 3.0-m interval. These contrasting frequency distributions demonstrate the wide variation in atmospheric boundary layer dynamics within an altitude change of 300 m.

Metrics