Abstract

Simple expressions for the temperature-dependent absorptivity at 10.6 μm have been computed for silver, aluminum, gold, copper, lead, and tungsten by means of a straightforward application of the Drude model and experimental dc conductivity data over a wide temperature range. The results of these computations are in reasonable agreement with experimental data where such are available.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968), p. 168.
  2. H. E. Bennett, N. Silver, E. J. Ashley, J. Opt. Soc. Am. 53, 1089 (1963).
    [CrossRef]
  3. Ref. 1, p. 163.
  4. M. A. Ordal et al., Appl. Opt. 22, 1099 (1983).
    [CrossRef] [PubMed]
  5. J. Babiskin, J. R. Anderson, in The American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, New York, 1972), pp. 9-39—9-40.
  6. A. Goldsmith et al., Handbook of Thermophysical Properties of Solid Materials, Vol. 1 (MacMillan, New York, 1961).
  7. R. Lyon, Ed., The Liquid Metals Handbook, The Atomic Energy Commission and Bureau of Ships, Department of the Navy (1954), pp. 41–43.
  8. W. Hoffman, Lead and Lead Alloys, Properties and Technology (Springer, Berlin, 1970), p. 20.
  9. D. L. Decker, V. A. Hodgkin, in Proceedings, Symposium on Laser Induced Damage in Optical Materials, Boulder, Colo., 30 Sept.–1 Oct. 1980 (National Bureau of Standards, Oct.1981), p. 190.
  10. G. Hass, in Applied Optics and Optical Engineering, Vol. 3, R. Kingslake, Ed. (Academic, New York, 1965), p. 309.
  11. J. J-G. Hsia, Ph.D. Thesis, Purdue U. (1968).
  12. J. M. Bennett, E. J. Ashley, Appl. Opt. 4, 221 (1965).
    [CrossRef]
  13. V. A. Hodgkin, Naval Weapons Center; private communication.
  14. J. N. Hodgson, in Liquid Metals, Chemistry and Physics, S. Z. Beer, Ed. (Marcel Dekker, New York, 1972), p. 345.
  15. M. Sparks, E. Loh, J. Opt. Soc. Am. 69, 847 (1979).
    [CrossRef]
  16. M. Sparks, E. Loh, J. Opt. Soc. Am. 69, 859 (1979).
    [CrossRef]

1983

1979

1965

1963

Anderson, J. R.

J. Babiskin, J. R. Anderson, in The American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, New York, 1972), pp. 9-39—9-40.

Ashley, E. J.

Babiskin, J.

J. Babiskin, J. R. Anderson, in The American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, New York, 1972), pp. 9-39—9-40.

Bennett, H. E.

Bennett, J. M.

Decker, D. L.

D. L. Decker, V. A. Hodgkin, in Proceedings, Symposium on Laser Induced Damage in Optical Materials, Boulder, Colo., 30 Sept.–1 Oct. 1980 (National Bureau of Standards, Oct.1981), p. 190.

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968), p. 168.

Goldsmith, A.

A. Goldsmith et al., Handbook of Thermophysical Properties of Solid Materials, Vol. 1 (MacMillan, New York, 1961).

Hass, G.

G. Hass, in Applied Optics and Optical Engineering, Vol. 3, R. Kingslake, Ed. (Academic, New York, 1965), p. 309.

Hodgkin, V. A.

D. L. Decker, V. A. Hodgkin, in Proceedings, Symposium on Laser Induced Damage in Optical Materials, Boulder, Colo., 30 Sept.–1 Oct. 1980 (National Bureau of Standards, Oct.1981), p. 190.

V. A. Hodgkin, Naval Weapons Center; private communication.

Hodgson, J. N.

J. N. Hodgson, in Liquid Metals, Chemistry and Physics, S. Z. Beer, Ed. (Marcel Dekker, New York, 1972), p. 345.

Hoffman, W.

W. Hoffman, Lead and Lead Alloys, Properties and Technology (Springer, Berlin, 1970), p. 20.

Hsia, J. J-G.

J. J-G. Hsia, Ph.D. Thesis, Purdue U. (1968).

Loh, E.

Ordal, M. A.

Silver, N.

Sparks, M.

Appl. Opt.

J. Opt. Soc. Am.

Other

J. Babiskin, J. R. Anderson, in The American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, New York, 1972), pp. 9-39—9-40.

A. Goldsmith et al., Handbook of Thermophysical Properties of Solid Materials, Vol. 1 (MacMillan, New York, 1961).

R. Lyon, Ed., The Liquid Metals Handbook, The Atomic Energy Commission and Bureau of Ships, Department of the Navy (1954), pp. 41–43.

W. Hoffman, Lead and Lead Alloys, Properties and Technology (Springer, Berlin, 1970), p. 20.

D. L. Decker, V. A. Hodgkin, in Proceedings, Symposium on Laser Induced Damage in Optical Materials, Boulder, Colo., 30 Sept.–1 Oct. 1980 (National Bureau of Standards, Oct.1981), p. 190.

G. Hass, in Applied Optics and Optical Engineering, Vol. 3, R. Kingslake, Ed. (Academic, New York, 1965), p. 309.

J. J-G. Hsia, Ph.D. Thesis, Purdue U. (1968).

G. R. Fowles, Introduction to Modern Optics (Holt, Rinehart & Winston, New York, 1968), p. 168.

Ref. 1, p. 163.

V. A. Hodgkin, Naval Weapons Center; private communication.

J. N. Hodgson, in Liquid Metals, Chemistry and Physics, S. Z. Beer, Ed. (Marcel Dekker, New York, 1972), p. 345.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Temperature dependence of the absorptivities of Ag, Al, Au, Cu, Pb, and W at 10.6 μm calculated from Drude parameters obtained from room temperature complex indices of refraction and temperature-dependent bulk dc electrical conductivities.

Tables (4)

Tables Icon

Table I Room Temperature Drude Parameters Used to Calculate 10.6-μm Absorptivities of Metals (Second Entry in Each Case is the Best-Fit Value of Ordal et al.4) and Coefficients Obtained by Least-Squares Fits of the Form 100 × A(T) = ∑aiTi); Notation: 1.2(3) = 1.2 × 103

Tables Icon

Table II Comparison of Room Temperature Absorptivities from Least-Squares Fits with Experimental Values (Literature Values at 10 μm)

Tables Icon

Table III Comparison of Temperature Dependence of Reflectivities from Least-Squares Fits with Experimental Values a

Tables Icon

Table IV Drude Parameters and Calculated Absorptivities for Molten Metals a

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A = 1 - R = 1 - ( 1 - n ) 2 + k 2 ( 1 + n ) + k 2 ,
n 2 - k 2 = 1 - ω p 2 / ( ω 2 + τ - 2 ) ,
2 n k = ω p 2 / [ ω τ ( ω 2 + τ - 2 ) ] ,
ω p = ( N e 2 m * ɛ 0 ) 1 / 2 ,
τ = ( m * σ 0 N e 2 ) ,
ω p = ( n 2 - 2 n + k 2 + 1 ) 1 / 2 ( n 2 + 2 n + k 2 + 1 ) 1 / 2 ω ( k 2 - n 2 + 1 ) 1 / 2 ,
τ = 1 + k 2 - n 2 2 k n ω .
n = 1 2 { [ ( 1 - Q ) 2 + ( Q ω τ ) 2 ] 1 / 2 - Q + 1 } 1 / 2 ,
k = 1 2 { [ ( 1 - Q ) 2 + ( Q ω τ ) ] 1 / 2 + Q - 1 } 1 / 2 ,
Q = ω p 2 / ( ω 2 + τ - 2 ) .
100 A ( T ) = i = 0 a i [ T ( kelvin ) ] i

Metrics