Abstract

The design details of an integrated optical fast D–A converter are presented. Nine directional couplers with identical electrode lengths are utilized in the design of an 8-bit two’s complement, bipolar system. This D–A converter compares very favorably with respect to Mach-Zehnder systems as far as size, flexibility, and bipolar capabilities are concerned. Fast D–A conversion and analog switching may be particularly desirable for optical interconnection and computing networks.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Zernike, “Integrated Optic Switch,” in Digest of Topical Meeting on Integrated Optics (Optical Society of America, Washington, D.C., 1974).
  2. R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, New York, 1982).
  3. W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).
  4. F. J. Leonberger, Opt. Lett. 5, 312 (1980).
    [CrossRef] [PubMed]
  5. H. F. Taylor, Appl. Opt. 17, 1493 (1978).
    [CrossRef] [PubMed]
  6. H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
    [CrossRef]
  7. F. J. Leonberger, C. E. Woodward, D. L. Spears, IEEE Trans. Circuits Syst. CAS-26, 1125 (1979).
    [CrossRef]
  8. M. Papuchon, C. Puech, A. Schnapper, in Technical Digest, Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper TuE2.
  9. E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969); S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsberger, Appl. Phys. Lett. 22, 46 (1973); H. F. Taylor, J. Appl. Phys. 44, 3257 (1973); J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
    [CrossRef]
  10. P. Horowitz, W. Hill, The Art of Electronics (Cambridge U.P., New York, 1980).
  11. D. Marcuse, IEEE J. Quantum. Electron. QE-18, 393 (1982).
    [CrossRef]
  12. M. Kuznetsov, Opt. Lett. 8, 499 (1983).
    [CrossRef] [PubMed]
  13. R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
    [CrossRef]
  14. D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (Sept.1972).
    [CrossRef]
  15. C. M. Verber, R. P. Kenan, J. R. Busch, Appl. Opt. 20, 1626 (1981); C. M. Verber, R. P. Kenan, Proc. Soc. Photo-Opt. Instrum. Eng. 408, 57 (1983).
    [CrossRef] [PubMed]

1983 (1)

1982 (2)

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

D. Marcuse, IEEE J. Quantum. Electron. QE-18, 393 (1982).
[CrossRef]

1981 (1)

1980 (1)

1979 (1)

F. J. Leonberger, C. E. Woodward, D. L. Spears, IEEE Trans. Circuits Syst. CAS-26, 1125 (1979).
[CrossRef]

1978 (2)

H. F. Taylor, Appl. Opt. 17, 1493 (1978).
[CrossRef] [PubMed]

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

1976 (1)

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

1972 (1)

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (Sept.1972).
[CrossRef]

1969 (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969); S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsberger, Appl. Phys. Lett. 22, 46 (1973); H. F. Taylor, J. Appl. Phys. 44, 3257 (1973); J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Bauer, P. W.

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

Bomberger, W. D.

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

Busch, J. R.

Chen, B.

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

Ferrero, R. A.

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (Sept.1972).
[CrossRef]

Findakly, T.

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

Hill, W.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U.P., New York, 1980).

Horowitz, P.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U.P., New York, 1980).

Hunsperger, R. G.

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, New York, 1982).

Kenan, R. P.

Kogelnik, H.

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

Kuznetsov, M.

Leonberger, F. J.

F. J. Leonberger, Opt. Lett. 5, 312 (1980).
[CrossRef] [PubMed]

F. J. Leonberger, C. E. Woodward, D. L. Spears, IEEE Trans. Circuits Syst. CAS-26, 1125 (1979).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969); S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsberger, Appl. Phys. Lett. 22, 46 (1973); H. F. Taylor, J. Appl. Phys. 44, 3257 (1973); J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

Marcuse, D.

D. Marcuse, IEEE J. Quantum. Electron. QE-18, 393 (1982).
[CrossRef]

Papuchon, M.

M. Papuchon, C. Puech, A. Schnapper, in Technical Digest, Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper TuE2.

Puech, C.

M. Papuchon, C. Puech, A. Schnapper, in Technical Digest, Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper TuE2.

Schmidt, R. V.

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

Schnapper, A.

M. Papuchon, C. Puech, A. Schnapper, in Technical Digest, Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper TuE2.

Sheingold, D. H.

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (Sept.1972).
[CrossRef]

Spears, D. L.

F. J. Leonberger, C. E. Woodward, D. L. Spears, IEEE Trans. Circuits Syst. CAS-26, 1125 (1979).
[CrossRef]

Taylor, H. F.

H. F. Taylor, Appl. Opt. 17, 1493 (1978).
[CrossRef] [PubMed]

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

Taylor, M. J.

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

Verber, C. M.

Woodward, C. E.

F. J. Leonberger, C. E. Woodward, D. L. Spears, IEEE Trans. Circuits Syst. CAS-26, 1125 (1979).
[CrossRef]

Zernike, F.

F. Zernike, “Integrated Optic Switch,” in Digest of Topical Meeting on Integrated Optics (Optical Society of America, Washington, D.C., 1974).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

R. V. Schmidt, H. Kogelnik, Appl. Phys. Lett. 28, 503 (1976).
[CrossRef]

H. F. Taylor, M. J. Taylor, P. W. Bauer, Appl. Phys. Lett. 32, 559 (1978).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, Bell Syst. Tech. J. 48, 2071 (1969); S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsberger, Appl. Phys. Lett. 22, 46 (1973); H. F. Taylor, J. Appl. Phys. 44, 3257 (1973); J. C. Campbell, F. A. Blum, D. W. Shaw, K. L. Lawley, Appl. Phys. Lett. 27, 202 (1975).
[CrossRef]

IEEE J. Quantum. Electron. (1)

D. Marcuse, IEEE J. Quantum. Electron. QE-18, 393 (1982).
[CrossRef]

IEEE Spectrum (1)

D. H. Sheingold, R. A. Ferrero, IEEE Spectrum 9, 47 (Sept.1972).
[CrossRef]

IEEE Trans. Circuits Syst. (1)

F. J. Leonberger, C. E. Woodward, D. L. Spears, IEEE Trans. Circuits Syst. CAS-26, 1125 (1979).
[CrossRef]

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

W. D. Bomberger, T. Findakly, B. Chen, Proc. Soc. Photo-Opt. Instrum. Eng. 321, 38 (1982).

Other (4)

F. Zernike, “Integrated Optic Switch,” in Digest of Topical Meeting on Integrated Optics (Optical Society of America, Washington, D.C., 1974).

R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer, New York, 1982).

M. Papuchon, C. Puech, A. Schnapper, in Technical Digest, Integrated and Guided-Wave Optics (Optical Society of America, Washington, D.C., 1980), paper TuE2.

P. Horowitz, W. Hill, The Art of Electronics (Cambridge U.P., New York, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Elementary building block for an IOC D–A converter based on a directional coupler with a double electrode structure.

Fig. 2
Fig. 2

Parallel–antiparallel arrangement of detector outputs for an 8-bit IOC D–A converter with two’s complement bipolar code convention.

Fig. 3
Fig. 3

Coupler cross section (from Marcatili9).

Fig. 4
Fig. 4

Plot of normalized propagation constant vs channel width a. The optimum design region for both single-mode propagation and design accuracy is indicated.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

k x a = p π - tan - 1 k x ξ 3 - tan - 1 k x ξ 5 ,
k y b = q π - tan - 1 n 2 2 n 1 2 k y η 2 - tan - 1 n 4 2 n 1 2 k y η 4 ,
ζ 5 3 = 1 k x 5 3 = 1 [ ( π A 5 3 ) 2 - k x 2 ] 1 / 2 ,
η 4 2 = 1 k y 4 2 = 1 [ ( π A 4 2 ) 2 - k y 2 ] 1 / 2 ,
A 2 , 3 , 4 , 5 = π ( k 1 2 - k 2 , 3 , 4 , 5 2 ) 1 / 2 = λ 2 ( n 1 2 - n 2 , 3 , 4 , 5 2 ) 1 / 2 ,
k z = ( k 1 2 - k x 2 - k y 2 ) 1 / 2 ,
β n = k z 2 - k 4 2 k 1 2 - k 4 2 .
K y = 2 k x 2 ζ 5 exp ( - c / ζ 5 ) k z a a ( 1 + k x 2 ζ 5 2 ) ( a + ζ 3 + ζ 5 ) .
L = π 2 K y .
y ( x i ) = 2 i 2 n i = 0 , 1 , 2 , n - 1 ,
y ( x s ) = 1 for the sign bit .
y ( x i ) = cos 2 [ 1 2 x i 2 + π 2 ] + x i 2 x i 2 + π 2 sin 2 [ 1 2 x i 2 + π 2 ] ,
x i = Δ β i · L = ( β 0 - β 1 ) i · L = Δ β i · π 2 K y ,
Δ β i = 2 π λ 0 Δ n i = 2 π λ 0 ( 1 2 ) n e 3 r 33 ( E z i · 2 · γ ) ,
x i = Δ β i · L = 2 π λ 0 [ n e 3 r 33 2 ( 2 V r i 2 b + c · γ ) ] · L ,
( γ · V r i ) = x i ( 2 b + c · λ 0 ) 2 π n e 3 r 33 · L .
y ( x s ) = 2 n - 1 2 n ,

Metrics