Abstract

A pulsed CO2 lidar was used to study statistical properties of signal returns from various rough surfaces at distances near 2 km. These included natural in situ topographic materials as well as man-made hard targets. Three lidar configurations were used: heterodyne detection with single temporal mode transmitter pulses, and direct detection with single and multiple temporal mode pulses. The significant differences in signal return statistics, due largely to speckle effects, are discussed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chap. 2.
    [CrossRef]
  2. P. A. Pincus, M. E. Fossey, J. F. Holmes, J. R. Kerr, “Speckle propagation through turbulence: experimental,” J. Opt. Soc. Am. 68, 760 (1978).
    [CrossRef]
  3. C. M. McIntyre, M. H. Lee, J. H. Churnside, “Statistics of irradiance scattered from a diffuse target containing multiple glints,” J. Opt. Soc. Am. 70, 1084 (1980).
    [CrossRef]
  4. J. F. Holmes, M. H. Lee, J. R. Kerr, “Effect of the log-amplitude covariance function on the statistics of speckle propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 70, 355 (1980).
    [CrossRef]
  5. V. S. Rao Gudimetla, J. F. Holmes, “Probability density function of the intensity for a laser-generated speckle field after propagation through the turbulent atmosphere,” J. Opt. Soc. Am. 72, 1213 (1982).
    [CrossRef]
  6. J. F. Holmes, “The Effects of Target Induced Speckle, Atmospheric Turbulence, and Beam Pointing Jitter on the Errors in Remote Sensing Measurements,” in Technical Digest Workshop on Optical and Laser and Remote Sensing, Monterey, Calif., Feb. 1982.
  7. R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.
  8. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental comparison of heterodyne and direction detection for pulsed differential absorption CO2 lidar,” Appl. Opt. 22, 682 (1983).
    [CrossRef] [PubMed]
  9. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurment of tropospheric ozone,” Appl. Opt. 20, 545 (1981).
    [CrossRef] [PubMed]
  10. J. L. Bufton, T. Itabe, D. A. Grolemund, “Dual-wavelength correlation measurements with an airborne pulsed carbon dioxide lidar system,” Opt. Lett. 7, 584 (1982).
    [CrossRef] [PubMed]
  11. J. H. Shapiro, B. A. Capron, R. C. Harney, “Imaging and target detection with a heterodyne-reception optical radar,” Appl. Opt. 20, 3292 (1981).
    [CrossRef] [PubMed]
  12. P. H. Flamant, R. T. Menzies, “Mode Selection and Frequency Tuning by Injection in Pulsed TEA-CO2 Lasers,” IEEE J. Quantum Electron. QE-19, 821 (1983).
    [CrossRef]
  13. M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
    [CrossRef]
  14. G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975) Chap. 3.
    [CrossRef]
  15. N. George, “The Wavelength Sensitivity of Back-Scattering,” Opt. Commun. 16, 328 (1976).
    [CrossRef]
  16. J. H. Friedman, “Data Analysis Techniques for High Energy Particle Physics,” Stanford University Report SLAC-176 UC-34d (Sept.1974).
  17. D. O. Loftsgaarden, C. P. Quesenberry, “A Nonparametric Estimate of a Multivariate Density Function,” Ann. Math. Stat. 36, 1049 (1965).
    [CrossRef]
  18. K. Fukunaga, L. D. Hostetler, “Optimization of k-Nearest-Neighbor Density Estimates,” IEEE Trans. Inf. Theory IT-19, 320 (1973).
    [CrossRef]
  19. J. Y. Wang, “Laboratory Target Reflectance Measurements for Coherent Laser Radar Applications,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper TuB5.
  20. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements,” Appl. Opt. 21, 3377 (1982).
    [CrossRef] [PubMed]

1983 (2)

P. H. Flamant, R. T. Menzies, “Mode Selection and Frequency Tuning by Injection in Pulsed TEA-CO2 Lasers,” IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental comparison of heterodyne and direction detection for pulsed differential absorption CO2 lidar,” Appl. Opt. 22, 682 (1983).
[CrossRef] [PubMed]

1982 (4)

1981 (2)

1980 (2)

1978 (1)

1976 (1)

N. George, “The Wavelength Sensitivity of Back-Scattering,” Opt. Commun. 16, 328 (1976).
[CrossRef]

1973 (1)

K. Fukunaga, L. D. Hostetler, “Optimization of k-Nearest-Neighbor Density Estimates,” IEEE Trans. Inf. Theory IT-19, 320 (1973).
[CrossRef]

1965 (1)

D. O. Loftsgaarden, C. P. Quesenberry, “A Nonparametric Estimate of a Multivariate Density Function,” Ann. Math. Stat. 36, 1049 (1965).
[CrossRef]

Bufton, J. L.

Capron, B. A.

Churnside, J. H.

DeFeo, W. E.

Flamant, P. H.

P. H. Flamant, R. T. Menzies, “Mode Selection and Frequency Tuning by Injection in Pulsed TEA-CO2 Lasers,” IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

Fossey, M. E.

Friedman, J. H.

J. H. Friedman, “Data Analysis Techniques for High Energy Particle Physics,” Stanford University Report SLAC-176 UC-34d (Sept.1974).

Fukunaga, K.

K. Fukunaga, L. D. Hostetler, “Optimization of k-Nearest-Neighbor Density Estimates,” IEEE Trans. Inf. Theory IT-19, 320 (1973).
[CrossRef]

George, N.

N. George, “The Wavelength Sensitivity of Back-Scattering,” Opt. Commun. 16, 328 (1976).
[CrossRef]

Goodman, J. W.

J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chap. 2.
[CrossRef]

Grant, W. B.

Grolemund, D. A.

Harney, R. C.

Holmes, J. F.

Hostetler, L. D.

K. Fukunaga, L. D. Hostetler, “Optimization of k-Nearest-Neighbor Density Estimates,” IEEE Trans. Inf. Theory IT-19, 320 (1973).
[CrossRef]

Hufnagel, R. E.

R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.

Itabe, T.

Kavaya, M. J.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

Kerr, J. R.

Killinger, D. K.

Lee, M. H.

Loftsgaarden, D. O.

D. O. Loftsgaarden, C. P. Quesenberry, “A Nonparametric Estimate of a Multivariate Density Function,” Ann. Math. Stat. 36, 1049 (1965).
[CrossRef]

McDougal, D. S.

McIntyre, C. M.

Menyuk, C. R.

Menyuk, N.

Menzies, R. T.

P. H. Flamant, R. T. Menzies, “Mode Selection and Frequency Tuning by Injection in Pulsed TEA-CO2 Lasers,” IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurment of tropospheric ozone,” Appl. Opt. 20, 545 (1981).
[CrossRef] [PubMed]

Oppenheim, U. P.

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

Parry, G.

G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975) Chap. 3.
[CrossRef]

Pincus, P. A.

Quesenberry, C. P.

D. O. Loftsgaarden, C. P. Quesenberry, “A Nonparametric Estimate of a Multivariate Density Function,” Ann. Math. Stat. 36, 1049 (1965).
[CrossRef]

Rao Gudimetla, V. S.

Shapiro, J. H.

Shumate, M. S.

Wang, J. Y.

J. Y. Wang, “Laboratory Target Reflectance Measurements for Coherent Laser Radar Applications,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper TuB5.

Ann. Math. Stat. (1)

D. O. Loftsgaarden, C. P. Quesenberry, “A Nonparametric Estimate of a Multivariate Density Function,” Ann. Math. Stat. 36, 1049 (1965).
[CrossRef]

Appl. Opt. (4)

IEEE J. Quantum Electron. (2)

P. H. Flamant, R. T. Menzies, “Mode Selection and Frequency Tuning by Injection in Pulsed TEA-CO2 Lasers,” IEEE J. Quantum Electron. QE-19, 821 (1983).
[CrossRef]

M. J. Kavaya, R. T. Menzies, U. P. Oppenheim, “Optogalvanic Stabilization and Offset Tuning of a Carbon Dioxide Waveguide Laser,” IEEE J. Quantum Electron. QE-18, 19 (1982).
[CrossRef]

IEEE Trans. Inf. Theory (1)

K. Fukunaga, L. D. Hostetler, “Optimization of k-Nearest-Neighbor Density Estimates,” IEEE Trans. Inf. Theory IT-19, 320 (1973).
[CrossRef]

J. Opt. Soc. Am. (4)

Opt. Commun. (1)

N. George, “The Wavelength Sensitivity of Back-Scattering,” Opt. Commun. 16, 328 (1976).
[CrossRef]

Opt. Lett. (1)

Other (6)

J. H. Friedman, “Data Analysis Techniques for High Energy Particle Physics,” Stanford University Report SLAC-176 UC-34d (Sept.1974).

J. Y. Wang, “Laboratory Target Reflectance Measurements for Coherent Laser Radar Applications,” in Technical Digest, Second Topical Meeting on Coherent Laser Radar: Technology and Applications (Optical Society of America, Washington, D.C., 1983), paper TuB5.

G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975) Chap. 3.
[CrossRef]

J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer, New York, 1975), Chap. 2.
[CrossRef]

J. F. Holmes, “The Effects of Target Induced Speckle, Atmospheric Turbulence, and Beam Pointing Jitter on the Errors in Remote Sensing Measurements,” in Technical Digest Workshop on Optical and Laser and Remote Sensing, Monterey, Calif., Feb. 1982.

R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Washington, D.C., 1978), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Histograms of the received intensity for lidar returns from a sandblasted aluminum target at 1850-m distance for (a) direct detection and (b) heterodyne detection. The transmitter pulses were monochromatic (i.e., single longitudinal mode) for each case.

Fig. 2
Fig. 2

Histograms of the received intensity for lidar returns from treetop foliage at 1800-m distance for (a) direct detection and multimode transmitter pulses, (b) direct detection and single-longitudinal-mode transmitter pulses, and (c) heterodyne detection and single-longitudinal-mode pulses.

Fig. 3
Fig. 3

Histogram and nearest-neighbor estimates of the PDF of the received intensity for lidar returns from a 2000-m distant hillside covered with low shrubbery: (a) direct detection and multimode transmitter pulses, and (b) heterodyne detection and single-longitudinal-mode transmitter pulses.

Fig. 4
Fig. 4

Temporal histories of normalized intensity for lidar returns from treetop foliage at 1800-m distance.

Tables (1)

Tables Icon

Table I Normalized Variances for Return Signals from Various Diffuse Targets

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

p ^ ( x ) = ( k - 1 ) 2 N h ( x ) .
p ^ B ( x ) = n B 2 N B ( x ) .
I 0 = 1 S W ( x , y ) I ( x , y ) d x d y ,
S = W ( x , y ) d x d y .
σ 2 = I 2 S 2 R s ( Δ x , Δ y ) μ A ( Δ x , Δ y ) 2 d Δ x d Δ y ,
R s ( Δ x , Δ y ) = W ( x , y ) W ( x - Δ x , y - Δ y ) d x d y ,
σ 2 / I 2 = [ M ] - 1 ,
S c = μ A ( Δ x , Δ y ) 2 d Δ x d Δ y ,
PDF ( M I ) M ( I 0 ) M - 1 exp ( - M I 0 I ) Γ ( M ) ,
μ = exp [ - ( Δ k σ z / 2 ) 2 ] ,

Metrics