Abstract

The DIAL technique for remote monitoring of nitrogen dioxide is evaluated. A comprehensive field test and evaluation program was performed to determine the measuring capability for this pollutant. The potential sources of error are discussed and these are analyzed for the mobile lidar system used in the work. This system employs a dye laser pumped by a Nd:YAG laser; a laser source which has improved the measuring accuracy compared with earlier work on nitrogen dioxide. The accuracies are found to be good enough for measuring needs in many studies on air pollution problems. A few typical examples of measurements from the field test program are given.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer, Berlin, 1983).
  2. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979).
    [CrossRef] [PubMed]
  3. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 20, 4181 (1981).
    [CrossRef]
  4. K. Fredriksson, National Environment Protection Board Report SNV PM 1639 (1982).
  5. A.-L. Egebäck, K. Fredriksson, H. M. Hertz, Appl. Opt. 23, 722 (1984).
    [CrossRef] [PubMed]
  6. K. W. Rothe, U. Brinkman, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
    [CrossRef]
  7. W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
    [CrossRef]
  8. R. A. Baumgartner, L. D. Fletcher, J. G. Hawley, J. Air Pollut. Control Assoc. 29, 1162 (1979).
    [CrossRef]
  9. N. Takeuchi, H. Shimizu, M. Okuda, Appl. Opt. 17, 2734 (1978).
    [CrossRef] [PubMed]
  10. P.-I. Grennfelt, Institute of Air and Water Research, Göteborg; private communication.
  11. E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer, Berlin, 1976).
    [CrossRef]
  12. T. Halldorsson, J. Langerholc, Appl. Opt. 17, 240 (1978).
    [CrossRef] [PubMed]
  13. J. Harms, Appl. Opt. 18, 1559 (1979).
    [CrossRef] [PubMed]
  14. K. Sassen, G. C. Dodd, Appl. Opt. 21, 3162 (1982).
    [CrossRef] [PubMed]
  15. W. S. Heaps, in Proceedings, Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228, 75 (1982).
  16. S. R. Pal, A. I. Carswell, Appl. Opt. 15, 1990 (1976).
    [CrossRef] [PubMed]
  17. A. I. Carswell, Can. J. Phys. 61, 378 (1983).
    [CrossRef]
  18. P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
    [CrossRef]
  19. M. Aldén, H. Edner, S. Svanberg, Opt. Lett. 7, 543 (1982); H. Edner, K. Fredriksson, H. Hertz, S. Svanberg, Lund Reports on Atomic Physics, LRAP-21 (1983).
    [CrossRef] [PubMed]
  20. M. Aldén, H. Edner, S. Svanberg, Opt. Lett. 7, 221 (1982).
    [CrossRef] [PubMed]

1984

1983

A. I. Carswell, Can. J. Phys. 61, 378 (1983).
[CrossRef]

1982

1981

1979

1978

1976

1974

K. W. Rothe, U. Brinkman, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Aldén, M.

Baumgartner, R. A.

R. A. Baumgartner, L. D. Fletcher, J. G. Hawley, J. Air Pollut. Control Assoc. 29, 1162 (1979).
[CrossRef]

Brinkman, U.

K. W. Rothe, U. Brinkman, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Carswell, A. I.

Dodd, G. C.

Edner, H.

Egebäck, A.-L.

Fletcher, L. D.

R. A. Baumgartner, L. D. Fletcher, J. G. Hawley, J. Air Pollut. Control Assoc. 29, 1162 (1979).
[CrossRef]

Fredriksson, K.

Galle, B.

Grant, W. B.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Grennfelt, P.-I.

P.-I. Grennfelt, Institute of Air and Water Research, Göteborg; private communication.

Hake, R. D.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Halldorsson, T.

Harms, J.

Hawley, J. G.

R. A. Baumgartner, L. D. Fletcher, J. G. Hawley, J. Air Pollut. Control Assoc. 29, 1162 (1979).
[CrossRef]

Heaps, W. S.

W. S. Heaps, in Proceedings, Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228, 75 (1982).

Hertz, H. M.

Jolliffe, B. W.

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

Langerholc, J.

Liston, E. M.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Nyström, K.

Okuda, M.

Pal, S. R.

Proctor, E. K.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Robbins, R. C.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Rothe, K. W.

K. W. Rothe, U. Brinkman, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Sassen, K.

Shimizu, H.

Svanberg, S.

Takeuchi, N.

Walther, H.

K. W. Rothe, U. Brinkman, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Woods, P. T.

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

Appl. Opt.

Appl. Phys.

K. W. Rothe, U. Brinkman, H. Walther, Appl. Phys. 3, 116 (1974); Appl. Phys. 4, 181 (1975).
[CrossRef]

Appl. Phys. Lett.

W. B. Grant, R. D. Hake, E. M. Liston, R. C. Robbins, E. K. Proctor, Appl. Phys. Lett. 24, 550 (1974).
[CrossRef]

Can. J. Phys.

A. I. Carswell, Can. J. Phys. 61, 378 (1983).
[CrossRef]

J. Air Pollut. Control Assoc.

R. A. Baumgartner, L. D. Fletcher, J. G. Hawley, J. Air Pollut. Control Assoc. 29, 1162 (1979).
[CrossRef]

Opt. Laser Technol.

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

Opt. Lett.

Other

D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer, Berlin, 1983).

K. Fredriksson, National Environment Protection Board Report SNV PM 1639 (1982).

P.-I. Grennfelt, Institute of Air and Water Research, Göteborg; private communication.

E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer, Berlin, 1976).
[CrossRef]

W. S. Heaps, in Proceedings, Eleventh International Laser Radar Conference, NASA Conf. Publ. 2228, 75 (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the electronic and optical arrangements of the mobile DIAL system.

Fig. 2
Fig. 2

Absolute statistical error introduced by noise during daytime NO2 DIAL measurements toward the sky for two typical cases. The error in a measurement of a concentration at a specific distance is given by the value in the diagram divided by the measurement path length. The diagram shows an experimental determination of the error for a low laser power, 1–2 mJ/pulse.

Fig. 3
Fig. 3

Example of an NO2 DIAL measurement through the plume from a stack of a nitric acid plant. The lidar signals at the absorption and reference wavelengths are shown at left, and at upper right the DIAL curve is displayed. The concentration is evaluated with a 50-m path length in the fourth diagram.

Fig. 4
Fig. 4

Charting of the NO2 content in a plume from a saltpeter plant. The map is drawn from thirteen concentration profiles in different vertical directions.

Fig. 5
Fig. 5

Diagrams displaying NO2 DIAL measurements on a street during one day. The lower diagram shows the results of the individual measurements for the 5–15-m height. The upper diagram shows the average results for 1-h periods. Results from DIAL measurements at a greater height are included in the upper diagram. A path length of 500 m was chosen in the study. The measurement project was also a test on the statistical error.

Fig. 6
Fig. 6

NO2 concentrations along a city street with comparatively heavy traffic. The path length was 400 m in the evaluation. The results for two height intervals are shown in the diagram. The atmospheric mixing during the day is manifested.

Fig. 7
Fig. 7

DIAL measurements on a widespread plume from a metropolitan area. The average concentrations are given in the figure for each direction and the evaluated paths are indicated.

Tables (1)

Tables Icon

Table I Basic Parameters of the NO2 DIAL System

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P λ ( R , Δ R ) = C ( R ) W σ b N ( R ) Δ R R 2 × exp { - 2 0 R [ σ ( λ ) n ( r ) + σ a N ( r ) ] d r } .
P λ abs ( R ) P λ ref ( R ) = C exp { - 2 0 R [ σ ( 448.1 ) - σ ( 446.8 ) ] n ( r ) d r } ,
n ( r ) = { 2 ( R 2 - R 1 ) [ σ ( 448.1 ) - σ ( 446.8 ) ] } - 1 × ln P λ abs ( R 1 ) P λ ref ( R 2 ) P λ ref ( R 1 ) P λ abs ( R 2 ) .

Metrics