Abstract

A four-section CO2 laser is described which can produce 20 W in fundamental mode during a 1-sec pulse with a frequency tuning range of ±300 MHz. It operates at 200-Torr pressure using sonic axial flow to inhibit the discharge column from filamenting. The input power density is 58 W cm−3 corresponding to an efficiency of 2%.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Iola, G. Moruzzi, F. Strumiaf, Lett. Nuovo Cimento 28, 257 (1980).
    [CrossRef]
  2. R. L. Abrams, Appl. Phys. Lett. 25, 304 (1974).
    [CrossRef]
  3. R. McLeary, W. E. K. Gibbs, IEEE J. Quantum Electron. QE-9, 828 (1973).
    [CrossRef]
  4. Germanium beam splitters can only be used at these flux densities for quasi-cw (<3-sec) operation; see P. A. Young, Appl. Opt. 10, 638 (1971).
    [CrossRef] [PubMed]

1980 (1)

N. Iola, G. Moruzzi, F. Strumiaf, Lett. Nuovo Cimento 28, 257 (1980).
[CrossRef]

1974 (1)

R. L. Abrams, Appl. Phys. Lett. 25, 304 (1974).
[CrossRef]

1973 (1)

R. McLeary, W. E. K. Gibbs, IEEE J. Quantum Electron. QE-9, 828 (1973).
[CrossRef]

1971 (1)

Abrams, R. L.

R. L. Abrams, Appl. Phys. Lett. 25, 304 (1974).
[CrossRef]

Gibbs, W. E. K.

R. McLeary, W. E. K. Gibbs, IEEE J. Quantum Electron. QE-9, 828 (1973).
[CrossRef]

Iola, N.

N. Iola, G. Moruzzi, F. Strumiaf, Lett. Nuovo Cimento 28, 257 (1980).
[CrossRef]

McLeary, R.

R. McLeary, W. E. K. Gibbs, IEEE J. Quantum Electron. QE-9, 828 (1973).
[CrossRef]

Moruzzi, G.

N. Iola, G. Moruzzi, F. Strumiaf, Lett. Nuovo Cimento 28, 257 (1980).
[CrossRef]

Strumiaf, F.

N. Iola, G. Moruzzi, F. Strumiaf, Lett. Nuovo Cimento 28, 257 (1980).
[CrossRef]

Young, P. A.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. L. Abrams, Appl. Phys. Lett. 25, 304 (1974).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. McLeary, W. E. K. Gibbs, IEEE J. Quantum Electron. QE-9, 828 (1973).
[CrossRef]

Lett. Nuovo Cimento (1)

N. Iola, G. Moruzzi, F. Strumiaf, Lett. Nuovo Cimento 28, 257 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Block diagram of the electrode configuration and discharge tube assembly.

Fig. 2
Fig. 2

Comparison between the frequency ranges of the net laser gain (i.e., the small signal gain—the loss of cavity) at low pressure and at high pressure, showing the effective frequency tuning range.

Fig. 3
Fig. 3

Optical arrangement of the four-section laser: a = anode, c = cathode. The laser beam, in general, emits from both the output coupler and the Fox-Smith interferometer with comparable magnitude.

Fig. 4
Fig. 4

Reflectivity and phase difference (from πrad) of the Fox-Smith interferometer as a function of the sidearm displacement.

Fig. 5
Fig. 5

Chart recorder waveforms for a laser pulse Q-switched when the pressure reaches 80 Torr. The frequency of the confocal etalon is swept with a sawtooth waveform at a repetition rate of 10 sec−1. The confocal etalon shows the frequency to be A, 75 MHz; B, 100 MHz; and C, 200 MHz below line center as the optical cavity path length changes with pressure. The maximum output power is 24 W.

Fig. 6
Fig. 6

Instantaneous output power from the output coupler of the P20 line as a function of its frequency displacement from line center. The power emitted from the Fox-Smith is at least of equal magnitude.

Metrics