Abstract

The implementation of an all-optical scanning function utilizing twin-stripe injection lasers is discussed. Calculation are performed for 3-μm wide stripe devices allowing for stripe separations of 1 and 3 μm. The effect of optical injection under one of the stripes is computed for different injection currents. It is shown that the change in the gain profile brought about by optical injection leads to a rotation in the device far field. The merits of electronic and optical beam steering are briefly compared.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Katz, “Electronic Beam Steering of Semiconductor Injection Lasers: A Theoretical Analysis,” Appl. Opt. 22, 313 (1983).
    [CrossRef] [PubMed]
  2. W. Streifer, R. D. Burnham, D. R. Scifres, “Symmetrical and Asymmetrical Waveguiding in Very Narrow Conducting Stripe Lasers,” IEEE J. Quantum Electron. QE-15, 136 (1979).
    [CrossRef]
  3. K. A. Shore, P. J. Harnett, “Diffusion and Waveguiding Effects in Twin-Stripe Injection Lasers,” Opt. Quantum Electron. 14, 169 (1982).
    [CrossRef]
  4. K. A. Shore, T. E. Rozzi, “Near Field Control in Multi-Stripe-Geometry Injection Lasers,” IEEE J. Quantum Electron. QE-17, 718 (1981).
    [CrossRef]
  5. D. R. Scifres, W. Streifer, R. D. Burnham, “Beam Scanning with Twin-Stripe Injection Lasers,” Appl. Phys. Lett. 33, 702 (1978).
    [CrossRef]
  6. K. A. Shore, “Optically Steered Twin-Stripe Laser Beam Scanner,” Opt. Quantum Electron. 15, 461 (1983).
    [CrossRef]
  7. K. A. Shore, “Optically Induced Spatial Instability in Twin-Stripe Geometry Lasers,” Opt. Quantum Electron. 14, 177 (1982).
    [CrossRef]
  8. C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18, 259 (1982).
    [CrossRef]
  9. K. A. Shore, T. E. Rozzi, G. in’t Veld, “Semiconductor Laser Analysis: A General Method for Characterizing Devices of Various Cross-Sectional Geometries,” IEE Proc. I (Solid State and Electron Devices)221 (1980).
    [CrossRef]

1983 (2)

J. Katz, “Electronic Beam Steering of Semiconductor Injection Lasers: A Theoretical Analysis,” Appl. Opt. 22, 313 (1983).
[CrossRef] [PubMed]

K. A. Shore, “Optically Steered Twin-Stripe Laser Beam Scanner,” Opt. Quantum Electron. 15, 461 (1983).
[CrossRef]

1982 (3)

K. A. Shore, “Optically Induced Spatial Instability in Twin-Stripe Geometry Lasers,” Opt. Quantum Electron. 14, 177 (1982).
[CrossRef]

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

K. A. Shore, P. J. Harnett, “Diffusion and Waveguiding Effects in Twin-Stripe Injection Lasers,” Opt. Quantum Electron. 14, 169 (1982).
[CrossRef]

1981 (1)

K. A. Shore, T. E. Rozzi, “Near Field Control in Multi-Stripe-Geometry Injection Lasers,” IEEE J. Quantum Electron. QE-17, 718 (1981).
[CrossRef]

1980 (1)

K. A. Shore, T. E. Rozzi, G. in’t Veld, “Semiconductor Laser Analysis: A General Method for Characterizing Devices of Various Cross-Sectional Geometries,” IEE Proc. I (Solid State and Electron Devices)221 (1980).
[CrossRef]

1979 (1)

W. Streifer, R. D. Burnham, D. R. Scifres, “Symmetrical and Asymmetrical Waveguiding in Very Narrow Conducting Stripe Lasers,” IEEE J. Quantum Electron. QE-15, 136 (1979).
[CrossRef]

1978 (1)

D. R. Scifres, W. Streifer, R. D. Burnham, “Beam Scanning with Twin-Stripe Injection Lasers,” Appl. Phys. Lett. 33, 702 (1978).
[CrossRef]

Burnham, R. D.

W. Streifer, R. D. Burnham, D. R. Scifres, “Symmetrical and Asymmetrical Waveguiding in Very Narrow Conducting Stripe Lasers,” IEEE J. Quantum Electron. QE-15, 136 (1979).
[CrossRef]

D. R. Scifres, W. Streifer, R. D. Burnham, “Beam Scanning with Twin-Stripe Injection Lasers,” Appl. Phys. Lett. 33, 702 (1978).
[CrossRef]

Harnett, P. J.

K. A. Shore, P. J. Harnett, “Diffusion and Waveguiding Effects in Twin-Stripe Injection Lasers,” Opt. Quantum Electron. 14, 169 (1982).
[CrossRef]

Henry, C. H.

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

Katz, J.

Rozzi, T. E.

K. A. Shore, T. E. Rozzi, “Near Field Control in Multi-Stripe-Geometry Injection Lasers,” IEEE J. Quantum Electron. QE-17, 718 (1981).
[CrossRef]

K. A. Shore, T. E. Rozzi, G. in’t Veld, “Semiconductor Laser Analysis: A General Method for Characterizing Devices of Various Cross-Sectional Geometries,” IEE Proc. I (Solid State and Electron Devices)221 (1980).
[CrossRef]

Scifres, D. R.

W. Streifer, R. D. Burnham, D. R. Scifres, “Symmetrical and Asymmetrical Waveguiding in Very Narrow Conducting Stripe Lasers,” IEEE J. Quantum Electron. QE-15, 136 (1979).
[CrossRef]

D. R. Scifres, W. Streifer, R. D. Burnham, “Beam Scanning with Twin-Stripe Injection Lasers,” Appl. Phys. Lett. 33, 702 (1978).
[CrossRef]

Shore, K. A.

K. A. Shore, “Optically Steered Twin-Stripe Laser Beam Scanner,” Opt. Quantum Electron. 15, 461 (1983).
[CrossRef]

K. A. Shore, “Optically Induced Spatial Instability in Twin-Stripe Geometry Lasers,” Opt. Quantum Electron. 14, 177 (1982).
[CrossRef]

K. A. Shore, P. J. Harnett, “Diffusion and Waveguiding Effects in Twin-Stripe Injection Lasers,” Opt. Quantum Electron. 14, 169 (1982).
[CrossRef]

K. A. Shore, T. E. Rozzi, “Near Field Control in Multi-Stripe-Geometry Injection Lasers,” IEEE J. Quantum Electron. QE-17, 718 (1981).
[CrossRef]

K. A. Shore, T. E. Rozzi, G. in’t Veld, “Semiconductor Laser Analysis: A General Method for Characterizing Devices of Various Cross-Sectional Geometries,” IEE Proc. I (Solid State and Electron Devices)221 (1980).
[CrossRef]

Streifer, W.

W. Streifer, R. D. Burnham, D. R. Scifres, “Symmetrical and Asymmetrical Waveguiding in Very Narrow Conducting Stripe Lasers,” IEEE J. Quantum Electron. QE-15, 136 (1979).
[CrossRef]

D. R. Scifres, W. Streifer, R. D. Burnham, “Beam Scanning with Twin-Stripe Injection Lasers,” Appl. Phys. Lett. 33, 702 (1978).
[CrossRef]

Veld, G. in’t

K. A. Shore, T. E. Rozzi, G. in’t Veld, “Semiconductor Laser Analysis: A General Method for Characterizing Devices of Various Cross-Sectional Geometries,” IEE Proc. I (Solid State and Electron Devices)221 (1980).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. R. Scifres, W. Streifer, R. D. Burnham, “Beam Scanning with Twin-Stripe Injection Lasers,” Appl. Phys. Lett. 33, 702 (1978).
[CrossRef]

IEE Proc. I (Solid State and Electron Devices) (1)

K. A. Shore, T. E. Rozzi, G. in’t Veld, “Semiconductor Laser Analysis: A General Method for Characterizing Devices of Various Cross-Sectional Geometries,” IEE Proc. I (Solid State and Electron Devices)221 (1980).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. A. Shore, T. E. Rozzi, “Near Field Control in Multi-Stripe-Geometry Injection Lasers,” IEEE J. Quantum Electron. QE-17, 718 (1981).
[CrossRef]

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18, 259 (1982).
[CrossRef]

W. Streifer, R. D. Burnham, D. R. Scifres, “Symmetrical and Asymmetrical Waveguiding in Very Narrow Conducting Stripe Lasers,” IEEE J. Quantum Electron. QE-15, 136 (1979).
[CrossRef]

Opt. Quantum Electron. (3)

K. A. Shore, P. J. Harnett, “Diffusion and Waveguiding Effects in Twin-Stripe Injection Lasers,” Opt. Quantum Electron. 14, 169 (1982).
[CrossRef]

K. A. Shore, “Optically Steered Twin-Stripe Laser Beam Scanner,” Opt. Quantum Electron. 15, 461 (1983).
[CrossRef]

K. A. Shore, “Optically Induced Spatial Instability in Twin-Stripe Geometry Lasers,” Opt. Quantum Electron. 14, 177 (1982).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of twin-stripe laser subject to optical injection showing rotation of emitted radiation field.

Fig. 2
Fig. 2

Light output vs j1 for (a) 1-μm stripe separation and j2 = 60 mA; (b) 3-μm stripe separation and j2 = 30 mA.

Fig. 3
Fig. 3

Carrier concentration profile for 1-μm stripe separation j1 = 110 mA, j2 = 60 mA with (a) zero optical injection, (b) optical injection of 2.5 mW; corresponding near-field profile: (A) zero injection; (B) 2.5-mW optical injection.

Fig. 4
Fig. 4

Far-field pattern for device of Fig. 3 with (a) zero injection, (b) 2.5-mW optical injection.

Fig. 5
Fig. 5

Carrier concentration profile for 3-μm stripe separation, j1 = 30 mA, j2 = 30 mA with (a) zero optical injection, (b) 3-mW optical injection; corresponding near-field profile: (A) zero injection; (B) 3-mW optical injection.

Fig. 6
Fig. 6

Far-field pattern for device of Fig. 5 with (a) zero injection, (b) 3-mW optical injection.

Fig. 7
Fig. 7

Carrier concentration profile for 3-μm stripe separation j1 = 60 mA, j2 = 30 mA with (a) zero optical injection, (b) 0.9-mW optical injection; corresponding near-field profile: (A) zero injection; (B) 0.9-mW optical injection.

Fig. 8
Fig. 8

Far-field pattern for device of Fig. 7 with (a) zero injection, (b) 0.9-mW optical injection.

Fig. 9
Fig. 9

Change in first moment of far-field intensity vs optical injection power for (a) 1-μm stripe separation, j1 = 110 mA, j2 = 60 mA; (b) 3-μm stripe separation, j1 = 30 mA = j2;(c) 3-μm stripe separation, j1 = 60 mA, j2 = 30 mA.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

D d 2 n d x 2 = - J ( x ) e d + g t ( x ) [ P ( x ) + P IN ( x ) ] + B n 2 ,
Δ = ( - ρ + j ) g t v k 0 .
g t = α t n - β t ,
2 Im ( β ) = 1 τ p V .
d = 0.3 μ ; α t = 3 × 10 - 6 cm 2 / sec ; β t = 2 × 10 12 sec - 1 ; τ p = 3 psec ; D = 68 cm 2 / sec ; B = 1.5 × 10 - 10 cm 3 / sec .
θ = - π / 2 π / 2 F ( ϕ ) ϕ d ϕ - π / 2 π / 2 F ( ϕ ) d ϕ .

Metrics