Abstract

The flow field in chemical laser optical cavities with source flow injectors is investigated. The 2-D coupled gasdynamics, chemical–vibrational–rotational kinetics, and multiline laser radiation equations are solved by using a stable implicit numerical method. The flow field–resonator interaction through the gain-intensity relations is calculated by linearization of the kinetics equations and application of an iterative procedure. Calculated small signal gain distributions, closed cavity power variation with mode width, and intracavity spectral content are shown to be in close agreement with experimental measurements. A parametric study has also been conducted, and the potential improvements in performance are illustrated. The results indicate a strong dependency of optical power potential on fluid mechanical interactions with the injector cavity hardware.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Hendricks et al., AIAA paper 77–656 (1977).
  2. J. Thoenes et al., Lockheed Missiles and Space Company Report, AFWL-TR-78-19 (1979).
  3. D. O’Keefe et al., “Comparison of lamp and blazer Code Calculations with TRW CL XV Measurements,” Opt. Eng. 18, 363 (1979).
  4. A. Bhowmik et al., in Fourth International Symposium on Gas Flow and Chemical Lasers, Plenum Press, New York (1982).
  5. T. T. Yang, “Modeling of cw HF Chemical Lasers with Rotational Non-Equilibrium,” J. Phys. Paris C9, 51 (1980).
  6. T. T. Yang et al., in Fourth International Symposium on Gas Flow and Chemical Lasers, Plenum Press, New York (1982).
  7. V. Quan et al., “Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers,” AIAA J. 21, 1283 (1983).
    [CrossRef]
  8. B. E. Launder, “An Improved Pohlhausen-Type Method of Calculating the Two-Dimensional Laminar Boundary Layer in a Pressure Gradient,” J. Heat Transfer 360 (1964).
  9. N. L. Rapagnani, E. J. Jumper, Air Force Weapons Laboratory Report, AFWL-TR-75–311 (1975).
  10. N. Cohen, J. F. Bott, Aerospace Corp. Report, TR-0083(3603)-2 (1982).

1983

V. Quan et al., “Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers,” AIAA J. 21, 1283 (1983).
[CrossRef]

1980

T. T. Yang, “Modeling of cw HF Chemical Lasers with Rotational Non-Equilibrium,” J. Phys. Paris C9, 51 (1980).

1979

D. O’Keefe et al., “Comparison of lamp and blazer Code Calculations with TRW CL XV Measurements,” Opt. Eng. 18, 363 (1979).

1964

B. E. Launder, “An Improved Pohlhausen-Type Method of Calculating the Two-Dimensional Laminar Boundary Layer in a Pressure Gradient,” J. Heat Transfer 360 (1964).

Bhowmik, A.

A. Bhowmik et al., in Fourth International Symposium on Gas Flow and Chemical Lasers, Plenum Press, New York (1982).

Bott, J. F.

N. Cohen, J. F. Bott, Aerospace Corp. Report, TR-0083(3603)-2 (1982).

Cohen, N.

N. Cohen, J. F. Bott, Aerospace Corp. Report, TR-0083(3603)-2 (1982).

Hendricks, W. L.

W. L. Hendricks et al., AIAA paper 77–656 (1977).

Jumper, E. J.

N. L. Rapagnani, E. J. Jumper, Air Force Weapons Laboratory Report, AFWL-TR-75–311 (1975).

Launder, B. E.

B. E. Launder, “An Improved Pohlhausen-Type Method of Calculating the Two-Dimensional Laminar Boundary Layer in a Pressure Gradient,” J. Heat Transfer 360 (1964).

O’Keefe, D.

D. O’Keefe et al., “Comparison of lamp and blazer Code Calculations with TRW CL XV Measurements,” Opt. Eng. 18, 363 (1979).

Quan, V.

V. Quan et al., “Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers,” AIAA J. 21, 1283 (1983).
[CrossRef]

Rapagnani, N. L.

N. L. Rapagnani, E. J. Jumper, Air Force Weapons Laboratory Report, AFWL-TR-75–311 (1975).

Thoenes, J.

J. Thoenes et al., Lockheed Missiles and Space Company Report, AFWL-TR-78-19 (1979).

Yang, T. T.

T. T. Yang, “Modeling of cw HF Chemical Lasers with Rotational Non-Equilibrium,” J. Phys. Paris C9, 51 (1980).

T. T. Yang et al., in Fourth International Symposium on Gas Flow and Chemical Lasers, Plenum Press, New York (1982).

AIAA J.

V. Quan et al., “Computation of Reacting Flowfield with Radiation Interaction in Chemical Lasers,” AIAA J. 21, 1283 (1983).
[CrossRef]

J. Heat Transfer

B. E. Launder, “An Improved Pohlhausen-Type Method of Calculating the Two-Dimensional Laminar Boundary Layer in a Pressure Gradient,” J. Heat Transfer 360 (1964).

J. Phys. Paris

T. T. Yang, “Modeling of cw HF Chemical Lasers with Rotational Non-Equilibrium,” J. Phys. Paris C9, 51 (1980).

Opt. Eng.

D. O’Keefe et al., “Comparison of lamp and blazer Code Calculations with TRW CL XV Measurements,” Opt. Eng. 18, 363 (1979).

Other

A. Bhowmik et al., in Fourth International Symposium on Gas Flow and Chemical Lasers, Plenum Press, New York (1982).

W. L. Hendricks et al., AIAA paper 77–656 (1977).

J. Thoenes et al., Lockheed Missiles and Space Company Report, AFWL-TR-78-19 (1979).

N. L. Rapagnani, E. J. Jumper, Air Force Weapons Laboratory Report, AFWL-TR-75–311 (1975).

N. Cohen, J. F. Bott, Aerospace Corp. Report, TR-0083(3603)-2 (1982).

T. T. Yang et al., in Fourth International Symposium on Gas Flow and Chemical Lasers, Plenum Press, New York (1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Source flow cavity injector.

Fig. 2
Fig. 2

Comparison of calculated and measured small signal gain.

Fig. 3
Fig. 3

Comparison of calculated and measured specific power as function of mode width.

Fig. 4
Fig. 4

Comparison of calculated and measured spectral content.

Tables (1)

Tables Icon

Table I Potential Improvements In Specific Power

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 x ɛ x ( x ɛ ρ u ) + 1 y σ y ( y σ ρ v ) = 0 ,
ρ u u x + ρ v u y = - d p d x + 1 y σ y ( y σ μ u y ) ,
ρ u C p T x + ρ v C p T y = u d p d x + μ ( u y ) 2 + 1 y σ y ( y σ k T y ) + ρ T y i D i C p i F i y - i w ˙ i h i - i ( h i + ɛ i - h i + 1 ) α i I i ɛ i ,
ρ u F i x + ρ v F i y = 1 y σ y ( y σ ρ D i F i y ) + w ˙ i + α i I i ɛ i - α i - 1 I i - 1 ɛ i - 1 ,
A K L ϕ K + 1 L + 1 + B K L ϕ K + 1 L + C K L ϕ K + 1 L - 1 = D K L ,
A K L F i K + 1 L + 1 + B K L F i K + 1 L + j s i F j | K L F j K + 1 L + C K L F i K + 1 L - 1 = D i K L .

Metrics