Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. M. Goldsmith, “Spatially resolved saturated absorption spectroscopy in flames,” Opt. Lett. 6, 525 (1981).
    [CrossRef] [PubMed]
  2. R. L. Farrow, L. A. Rahn, “Spatially resolved infrared absorption measurements: application of optical Stark effect,” Opt. Lett. 6, 108 (1981).
    [CrossRef] [PubMed]
  3. J. E. M. Goldsmith, R. L. Farrow, “Spatially resolved optical Stark-modulation spectroscopy in flames,” Opt. Lett. 7, 215 (1982).
    [CrossRef] [PubMed]
  4. K. Knapp, R. K. Hanson, “Spatially resolved tunable diode-laser absorption measurements of CO using optical Stark shifting,” Appl. Opt. 22, 1980 (1983).
    [CrossRef] [PubMed]
  5. J. W. Daily, “Use of rate equations for describing laser excitation in flames,” Appl. Opt. 16, 2322 (1977).
    [CrossRef] [PubMed]
  6. R. P. Lucht, N. M. Laurendeau, “Two-level model for near saturated fluorescence in diatomic molecules,” Appl. Opt. 18, 856 (1979).
    [CrossRef] [PubMed]
  7. J. W. Daily, “Saturation and fluorescence in flames with a Gaussian laser beam,” Appl. Opt. 17, 225 (1978).
    [CrossRef] [PubMed]
  8. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Balanced cross-rate model for saturated molecular fluorescence in flames using a nanosecond pulse length laser,” Appl. Opt. 19, 3295 (1980).
    [CrossRef] [PubMed]
  9. A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
    [CrossRef]
  10. G. Kychakoff, M. A. Kimball-Linne, R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426 (1983).
    [CrossRef]

1983

1982

1981

1980

1979

R. P. Lucht, N. M. Laurendeau, “Two-level model for near saturated fluorescence in diatomic molecules,” Appl. Opt. 18, 856 (1979).
[CrossRef] [PubMed]

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

1978

1977

Bonczyck, P. A.

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Daily, J. W.

Eckbreth, A. C.

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Farrow, R. L.

Goldsmith, J. E. M.

Hanson, R. K.

Kimball-Linne, M. A.

Knapp, K.

Kychakoff, G.

Laurendeau, N. M.

Lucht, R. P.

Rahn, L. A.

Sweeney, D. W.

Verdieck, J. F.

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Appl. Opt.

Opt. Lett.

Prog. Energy Combus. Sci.

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic showing the basic arrangement for a saturated absorption cross-beam experiment. The upper portion shows the basic arrangement of the light sources and detector, while the lower portion shows the detector output as a function of time.

Fig. 2
Fig. 2

Sketch showing the geometry of the intersecting beams. The x-dimension of the probe beam is much smaller than the x-dimension of the pulsed beam. The z-dimension of the pulsed beam is expanded (using cylindrical lenses) to increase the interaction length.

Fig. 3
Fig. 3

Schematic showing experimental setup.

Fig. 4
Fig. 4

Inferred OH concentration (1 cm above the center of the flat flame burner) plotted as a function of stoichiometry. The data points were obtained from the XBSAS experiments, while the curve was obtained from previous fiber-optic probe results.10

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I t I 0 = exp 0 l - α ( z ) d z ,
α = α 0 / ( 1 + I p / I s ) ,
N 1 = α 0 / σ = Δ I I 0 1 σ l m ,
l m * = - f ( z ) I s / I p + f ( z ) d z .

Metrics