Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. M. Goldsmith, “Spatially resolved saturated absorption spectroscopy in flames,” Opt. Lett. 6, 525 (1981).
    [CrossRef] [PubMed]
  2. R. L. Farrow, L. A. Rahn, “Spatially resolved infrared absorption measurements: application of optical Stark effect,” Opt. Lett. 6, 108 (1981).
    [CrossRef] [PubMed]
  3. J. E. M. Goldsmith, R. L. Farrow, “Spatially resolved optical Stark-modulation spectroscopy in flames,” Opt. Lett. 7, 215 (1982).
    [CrossRef] [PubMed]
  4. K. Knapp, R. K. Hanson, “Spatially resolved tunable diode-laser absorption measurements of CO using optical Stark shifting,” Appl. Opt. 22, 1980 (1983).
    [CrossRef] [PubMed]
  5. J. W. Daily, “Use of rate equations for describing laser excitation in flames,” Appl. Opt. 16, 2322 (1977).
    [CrossRef] [PubMed]
  6. R. P. Lucht, N. M. Laurendeau, “Two-level model for near saturated fluorescence in diatomic molecules,” Appl. Opt. 18, 856 (1979).
    [CrossRef] [PubMed]
  7. J. W. Daily, “Saturation and fluorescence in flames with a Gaussian laser beam,” Appl. Opt. 17, 225 (1978).
    [CrossRef] [PubMed]
  8. R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Balanced cross-rate model for saturated molecular fluorescence in flames using a nanosecond pulse length laser,” Appl. Opt. 19, 3295 (1980).
    [CrossRef] [PubMed]
  9. A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
    [CrossRef]
  10. G. Kychakoff, M. A. Kimball-Linne, R. K. Hanson, “Fiber-optic absorption/fluorescence probes for combustion measurements,” Appl. Opt. 22, 1426 (1983).
    [CrossRef]

1983 (2)

1982 (1)

1981 (2)

1980 (1)

1979 (2)

R. P. Lucht, N. M. Laurendeau, “Two-level model for near saturated fluorescence in diatomic molecules,” Appl. Opt. 18, 856 (1979).
[CrossRef] [PubMed]

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

1978 (1)

1977 (1)

Bonczyck, P. A.

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Daily, J. W.

Eckbreth, A. C.

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Farrow, R. L.

Goldsmith, J. E. M.

Hanson, R. K.

Kimball-Linne, M. A.

Knapp, K.

Kychakoff, G.

Laurendeau, N. M.

Lucht, R. P.

Rahn, L. A.

Sweeney, D. W.

Verdieck, J. F.

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Appl. Opt. (6)

Opt. Lett. (3)

Prog. Energy Combus. Sci. (1)

A. C. Eckbreth, P. A. Bonczyck, J. F. Verdieck, “Combustion diagnostics by laser Raman and fluorescence techniques,” Prog. Energy Combus. Sci. 5, 252 (1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic showing the basic arrangement for a saturated absorption cross-beam experiment. The upper portion shows the basic arrangement of the light sources and detector, while the lower portion shows the detector output as a function of time.

Fig. 2
Fig. 2

Sketch showing the geometry of the intersecting beams. The x-dimension of the probe beam is much smaller than the x-dimension of the pulsed beam. The z-dimension of the pulsed beam is expanded (using cylindrical lenses) to increase the interaction length.

Fig. 3
Fig. 3

Schematic showing experimental setup.

Fig. 4
Fig. 4

Inferred OH concentration (1 cm above the center of the flat flame burner) plotted as a function of stoichiometry. The data points were obtained from the XBSAS experiments, while the curve was obtained from previous fiber-optic probe results.10

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I t I 0 = exp 0 l - α ( z ) d z ,
α = α 0 / ( 1 + I p / I s ) ,
N 1 = α 0 / σ = Δ I I 0 1 σ l m ,
l m * = - f ( z ) I s / I p + f ( z ) d z .

Metrics