Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Use of metallic substrates will be dealt with separately.
  2. For a discussion of conventional division-of-amplitude polarizing beam splitters and half-shade devices see J. M. Bennett, H. E. Bennett, in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978).
  3. See, for example, R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).
  4. See, for example, E. Ritter, in Physics of Thin Films, Vol. 8, G. Hass, M. H. Francombe, R. W. Hoffman, Eds. (Academic, New York, 1975).
  5. H. K. Pulker, “Characterization of optical thin films,” Appl. Opt. 18, 1969 (1979).
    [CrossRef] [PubMed]
  6. R. M. A. Azzam, “Direct relation between Freznel’s interface reflection coefficients for the parallel and perpendicular polarizations,” J. Opt. Soc. Am. 69, 1007 (1979).
    [CrossRef]
  7. D. E. Aspnes, A. A. Studna, “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
    [CrossRef]

1983

D. E. Aspnes, A. A. Studna, “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
[CrossRef]

1979

Aspnes, D. E.

D. E. Aspnes, A. A. Studna, “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
[CrossRef]

Azzam, R. M. A.

Bashara, N. M.

See, for example, R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

Bennett, H. E.

For a discussion of conventional division-of-amplitude polarizing beam splitters and half-shade devices see J. M. Bennett, H. E. Bennett, in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978).

Bennett, J. M.

For a discussion of conventional division-of-amplitude polarizing beam splitters and half-shade devices see J. M. Bennett, H. E. Bennett, in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978).

Pulker, H. K.

Ritter, E.

See, for example, E. Ritter, in Physics of Thin Films, Vol. 8, G. Hass, M. H. Francombe, R. W. Hoffman, Eds. (Academic, New York, 1975).

Studna, A. A.

D. E. Aspnes, A. A. Studna, “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Phys. Rev. B

D. E. Aspnes, A. A. Studna, “Dielectric Functions and Optical Parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27, 985 (1983).
[CrossRef]

Other

Use of metallic substrates will be dealt with separately.

For a discussion of conventional division-of-amplitude polarizing beam splitters and half-shade devices see J. M. Bennett, H. E. Bennett, in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978).

See, for example, R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977).

See, for example, E. Ritter, in Physics of Thin Films, Vol. 8, G. Hass, M. H. Francombe, R. W. Hoffman, Eds. (Academic, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Division-of-wave-front polarizing beam splitter and half-shade device consisting of a dielectric substrate (medium 2) partially covered by a dielectric thin film (medium 1) of appropriate refractive index and thickness d. p and s indicate the linear polarizations parallel and perpendicular to the plane of incidence, respectively, of a plane wave incident and reflected at angle ϕ in medium 0.

Fig. 2
Fig. 2

Polarizing angle of incidence ϕ [Eq. (2)] and film refractive index n1 [Eq. (10b)] vs substrate refractive index n2. n2 < 1 implies a dense medium of incidence and internal reflection.

Fig. 3
Fig. 3

Unextinguished s and p intensity reflectances s and p of the uncoated and coated areas, respectively, vs the substrate refractive index n2.

Fig. 4
Fig. 4

Examples of thin-film coating patterns and corresponding reflected polarization patterns. c and u indicate the coated and uncoated areas of the substrate, respectively.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

n 1 = N 1 / N 0 ,             n 2 = N 2 / N 0 .
tan ϕ p = n 2 .
R ν = [ r 01 ν + r 12 ν exp ( - j 2 π ζ ) ] / [ 1 + r 01 ν r 12 ν exp ( - j 2 π ζ ) ] ,
ζ = d / D ϕ .
D ϕ = λ 2 N 0 ( n 1 2 - sin 2 ϕ ) - 1 / 2
r 01 s = r 12 s ,
ζ = ½ ,
S 1 2 = S 0 S 2 ,
S i = ( N i 2 - N 0 2 sin 2 ϕ ) 1 / 2 ,             i = 0 , 1 , 2.
tan 2 ϕ s = n 2 2 - n 1 4 ( 1 - n 1 2 ) 2 .
ϕ p = ϕ s = ϕ .
n 1 2 = 2 n 2 2 n 2 2 + 1
n 1 = 2 [ 1 + ( 1 / n 2 2 ) ] 1 / 2 .
d s = 2 ( λ / 4 N 1 ) ,
R s = cos 2 ϕ .
R p = 2 r 01 p / ( 1 + r 01 p 2 )
R p = - cos 2 2 ϕ / ( 2 - cos 2 2 ϕ ) .
R p = - R s 2 / ( 2 - R s 2 ) .
R p = [ R s / ( 2 - R s ) ] 2 .
d ϕ s d n 1 = - n 1 2 ( 2 - n 1 2 ) 1 / 2 ( n 1 2 - 1 ) 2
= - 2 2 n 2 2 ( n 2 2 + 1 ) 1 / 2 ( n 2 2 - 1 ) 2
- 2 2 / n 2 , when n 2 2 1.
Δ η = ( d - d s ) / d s .
R s = - j ( π / 4 ) ( n 2 - 1 n 2 ) Δ η ,
R s = ( π / 4 ) 2 ( n 2 - 1 n 2 ) 2 ( Δ η ) 2 .

Metrics