Abstract

A compact computer-controlled CO2-laser long-path absorption system has been developed. It is specifically designed to monitor gaseous pollutants in the working environment. The instrument uses a closed-cycle cooling system for the lasers and operates with room-temperature pyroelectric detectors. The high degree of automation and the compact design make the system easy to use. It has been used to measure several different species such as ammonia and methyl ethyl ketone in various industrial environments.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Johansson, B. G. Marthinsson, S. T. Eng, IEEE Trans. Instrum. Meas. IM-27, 352 (1978).
  2. B. Marthinsson, J. Johansson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
    [CrossRef]
  3. U. Persson, J. Johansson, B. Marthinsson, S. T. Eng, Appl. Opt. 21, 4417 (1982).
    [CrossRef] [PubMed]
  4. R. T. Menzies, M. S. Shumate, Appl. Opt. 15, 2080 (1976).
    [CrossRef] [PubMed]
  5. A. G. Kjellaas, P. E. Nordal, A. Bjerkestrand, Appl. Opt. 17, 277 (1978).
    [CrossRef]
  6. J. Boscher, G. Schafer, W. Wiesemann, “Gasfern analyse mit CO2-laser, Fortsetzung und Abschluss der Analytischen Laboruntersuchungen,” Battelle Institute e.V., Frankfurt, Report BF-R-63-616-4 (1979).
  7. B. D. Green, J. I. Steinfeld, Appl. Opt. 15, 1688 (1976), and references therein.
    [CrossRef] [PubMed]

1982

1980

B. Marthinsson, J. Johansson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

1978

J. Johansson, B. G. Marthinsson, S. T. Eng, IEEE Trans. Instrum. Meas. IM-27, 352 (1978).

A. G. Kjellaas, P. E. Nordal, A. Bjerkestrand, Appl. Opt. 17, 277 (1978).
[CrossRef]

1976

Bjerkestrand, A.

Boscher, J.

J. Boscher, G. Schafer, W. Wiesemann, “Gasfern analyse mit CO2-laser, Fortsetzung und Abschluss der Analytischen Laboruntersuchungen,” Battelle Institute e.V., Frankfurt, Report BF-R-63-616-4 (1979).

Eng, S. T.

U. Persson, J. Johansson, B. Marthinsson, S. T. Eng, Appl. Opt. 21, 4417 (1982).
[CrossRef] [PubMed]

B. Marthinsson, J. Johansson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

J. Johansson, B. G. Marthinsson, S. T. Eng, IEEE Trans. Instrum. Meas. IM-27, 352 (1978).

Green, B. D.

Johansson, J.

U. Persson, J. Johansson, B. Marthinsson, S. T. Eng, Appl. Opt. 21, 4417 (1982).
[CrossRef] [PubMed]

B. Marthinsson, J. Johansson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

J. Johansson, B. G. Marthinsson, S. T. Eng, IEEE Trans. Instrum. Meas. IM-27, 352 (1978).

Kjellaas, A. G.

Marthinsson, B.

U. Persson, J. Johansson, B. Marthinsson, S. T. Eng, Appl. Opt. 21, 4417 (1982).
[CrossRef] [PubMed]

B. Marthinsson, J. Johansson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

Marthinsson, B. G.

J. Johansson, B. G. Marthinsson, S. T. Eng, IEEE Trans. Instrum. Meas. IM-27, 352 (1978).

Menzies, R. T.

Nordal, P. E.

Persson, U.

Schafer, G.

J. Boscher, G. Schafer, W. Wiesemann, “Gasfern analyse mit CO2-laser, Fortsetzung und Abschluss der Analytischen Laboruntersuchungen,” Battelle Institute e.V., Frankfurt, Report BF-R-63-616-4 (1979).

Shumate, M. S.

Steinfeld, J. I.

Wiesemann, W.

J. Boscher, G. Schafer, W. Wiesemann, “Gasfern analyse mit CO2-laser, Fortsetzung und Abschluss der Analytischen Laboruntersuchungen,” Battelle Institute e.V., Frankfurt, Report BF-R-63-616-4 (1979).

Appl. Opt.

IEEE Trans. Instrum. Meas.

J. Johansson, B. G. Marthinsson, S. T. Eng, IEEE Trans. Instrum. Meas. IM-27, 352 (1978).

Opt. Quantum Electron.

B. Marthinsson, J. Johansson, S. T. Eng, Opt. Quantum Electron. 12, 327 (1980).
[CrossRef]

Other

J. Boscher, G. Schafer, W. Wiesemann, “Gasfern analyse mit CO2-laser, Fortsetzung und Abschluss der Analytischen Laboruntersuchungen,” Battelle Institute e.V., Frankfurt, Report BF-R-63-616-4 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Overview of the laser system. The total height of the system including periscope is 2.30 m. Length and width are 1.15 and 0.60 m, respectively.

Fig. 2
Fig. 2

Block diagram of the laser system. Both the lasers and signal-processing electronics are computer-controlled. The offset between the transmitted and received beams simplifies measurements on short paths.

Fig. 3
Fig. 3

Diagram showing the software structure in the system. The terminal is used only for diagnostic purposes.

Fig. 4
Fig. 4

Top view of the blueprint room measurement site showing the laser system and measurement paths.

Fig. 5
Fig. 5

Measurements of ammonia concentrations in a copy blueprint room. The path length is 2 × 11 m. The effects of the ventilation can be seen as an exponential decrease in the concentration. Comparative concentration values obtained with a Miran instrument are also indicated (dots).

Fig. 6
Fig. 6

Measurements of MEK in a sheet metal workshop. The path length is 2 × 130 m. The comparative measurements from the Miran instrument (dots) and a photoionization detector (squares) are indicated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P R = P 0 exp [ - k ( λ ) · L ] ,
C = 1 ( σ 2 - σ 1 ) L ln P R 1 P 01 P 02 P R 2 ,

Metrics