Abstract

The design of a high spectral resolution λ/Δλ ~ 1200 IR sounder capable of increasing the vertical resolution of atmospheric temperature profiles and achieving a rms accuracy of ~1.5 K is discussed. This sounder permits improved determination of meteorological parameters on cloudiness, surface temperature, and air–surface interactions. A set of channels from the high J lines in the R branch of the 4.3-μm CO2 band complemented by a larger set of window, humidity, and temperature channels in the 3.7-,6.3-, 9-, and 15-μm regions is used. Design and simulation studies show that such a sounder is within the present state of the art.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Phillips, “Results of Comparative Simulation Studies on AMTS and HIRS Conducted by NASA and NOAA,” to be published.
  2. L. Bengtsson, M. Kanamitsu, P. Kallberg, S. Uppala, Bull. Am. Meteorol. Soc. 63, 29 (1982).
  3. M. T. Chahine, J. Atmos Sci. 31, 233 (1974).
    [CrossRef]
  4. M. T. Chahine, J. Atmos. Sci. 34, 744 (1977).
    [CrossRef]
  5. M. T. Chahine, J. Atmos. Sci. 32, 1946 (1975).
    [CrossRef]
  6. M. T. Chahine, in Inversion Methods in Atmospheric Remote Sounding, A. Deepak, Ed. (Academic, New York, 1977), p. 67.
  7. W. L. Smith, Mon. Weather Rev. 96, 387 (1968).
    [CrossRef]
  8. L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, Appl. Opt. 16, 322 (1977).
    [CrossRef] [PubMed]
  9. J. Susskind, J. Rosenfield, D. Reuter, M. T. Chahine, “The GLAS Physical Inversion Method for Analysis of HIRS 2/MSU Sounding Data,” NASA Tech. Memo. 84936 (1982).
  10. M. T. Chahine, in Remote Sensing of Oceans and Atmospheres, A. Deepak, Ed. (Academic, New York, 1980), p. 411.
    [CrossRef]
  11. M. T. Chahine, H. H. Aumann, F. W. Taylor, J. Atmos. Sci. 34, 758 (1977).
    [CrossRef]
  12. M. T. Chahine, J. Atmos. Sci. 39, 159 (1982).
    [CrossRef]
  13. M. T. Chahine, in (COSPAR) Remote Sounding of the Atmosphere from Space, H. J. Bolle, Ed. (Pergamon, New York, 1979), p. 129.

1982 (2)

L. Bengtsson, M. Kanamitsu, P. Kallberg, S. Uppala, Bull. Am. Meteorol. Soc. 63, 29 (1982).

M. T. Chahine, J. Atmos. Sci. 39, 159 (1982).
[CrossRef]

1977 (3)

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

M. T. Chahine, H. H. Aumann, F. W. Taylor, J. Atmos. Sci. 34, 758 (1977).
[CrossRef]

M. T. Chahine, J. Atmos. Sci. 34, 744 (1977).
[CrossRef]

1975 (1)

M. T. Chahine, J. Atmos. Sci. 32, 1946 (1975).
[CrossRef]

1974 (1)

M. T. Chahine, J. Atmos Sci. 31, 233 (1974).
[CrossRef]

1968 (1)

W. L. Smith, Mon. Weather Rev. 96, 387 (1968).
[CrossRef]

Aumann, H. H.

M. T. Chahine, H. H. Aumann, F. W. Taylor, J. Atmos. Sci. 34, 758 (1977).
[CrossRef]

Bengtsson, L.

L. Bengtsson, M. Kanamitsu, P. Kallberg, S. Uppala, Bull. Am. Meteorol. Soc. 63, 29 (1982).

Chahine, M. T.

M. T. Chahine, J. Atmos. Sci. 39, 159 (1982).
[CrossRef]

M. T. Chahine, H. H. Aumann, F. W. Taylor, J. Atmos. Sci. 34, 758 (1977).
[CrossRef]

M. T. Chahine, J. Atmos. Sci. 34, 744 (1977).
[CrossRef]

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

M. T. Chahine, J. Atmos. Sci. 32, 1946 (1975).
[CrossRef]

M. T. Chahine, J. Atmos Sci. 31, 233 (1974).
[CrossRef]

M. T. Chahine, in Inversion Methods in Atmospheric Remote Sounding, A. Deepak, Ed. (Academic, New York, 1977), p. 67.

J. Susskind, J. Rosenfield, D. Reuter, M. T. Chahine, “The GLAS Physical Inversion Method for Analysis of HIRS 2/MSU Sounding Data,” NASA Tech. Memo. 84936 (1982).

M. T. Chahine, in Remote Sensing of Oceans and Atmospheres, A. Deepak, Ed. (Academic, New York, 1980), p. 411.
[CrossRef]

M. T. Chahine, in (COSPAR) Remote Sounding of the Atmosphere from Space, H. J. Bolle, Ed. (Pergamon, New York, 1979), p. 129.

Kallberg, P.

L. Bengtsson, M. Kanamitsu, P. Kallberg, S. Uppala, Bull. Am. Meteorol. Soc. 63, 29 (1982).

Kanamitsu, M.

L. Bengtsson, M. Kanamitsu, P. Kallberg, S. Uppala, Bull. Am. Meteorol. Soc. 63, 29 (1982).

Kaplan, L. D.

Phillips, N. A.

N. A. Phillips, “Results of Comparative Simulation Studies on AMTS and HIRS Conducted by NASA and NOAA,” to be published.

Reuter, D.

J. Susskind, J. Rosenfield, D. Reuter, M. T. Chahine, “The GLAS Physical Inversion Method for Analysis of HIRS 2/MSU Sounding Data,” NASA Tech. Memo. 84936 (1982).

Rosenfield, J.

J. Susskind, J. Rosenfield, D. Reuter, M. T. Chahine, “The GLAS Physical Inversion Method for Analysis of HIRS 2/MSU Sounding Data,” NASA Tech. Memo. 84936 (1982).

Searl, J. E.

Smith, W. L.

W. L. Smith, Mon. Weather Rev. 96, 387 (1968).
[CrossRef]

Susskind, J.

L. D. Kaplan, M. T. Chahine, J. Susskind, J. E. Searl, Appl. Opt. 16, 322 (1977).
[CrossRef] [PubMed]

J. Susskind, J. Rosenfield, D. Reuter, M. T. Chahine, “The GLAS Physical Inversion Method for Analysis of HIRS 2/MSU Sounding Data,” NASA Tech. Memo. 84936 (1982).

Taylor, F. W.

M. T. Chahine, H. H. Aumann, F. W. Taylor, J. Atmos. Sci. 34, 758 (1977).
[CrossRef]

Uppala, S.

L. Bengtsson, M. Kanamitsu, P. Kallberg, S. Uppala, Bull. Am. Meteorol. Soc. 63, 29 (1982).

Appl. Opt. (1)

Bull. Am. Meteorol. Soc. (1)

L. Bengtsson, M. Kanamitsu, P. Kallberg, S. Uppala, Bull. Am. Meteorol. Soc. 63, 29 (1982).

J. Atmos Sci. (1)

M. T. Chahine, J. Atmos Sci. 31, 233 (1974).
[CrossRef]

J. Atmos. Sci. (4)

M. T. Chahine, J. Atmos. Sci. 34, 744 (1977).
[CrossRef]

M. T. Chahine, J. Atmos. Sci. 32, 1946 (1975).
[CrossRef]

M. T. Chahine, H. H. Aumann, F. W. Taylor, J. Atmos. Sci. 34, 758 (1977).
[CrossRef]

M. T. Chahine, J. Atmos. Sci. 39, 159 (1982).
[CrossRef]

Mon. Weather Rev. (1)

W. L. Smith, Mon. Weather Rev. 96, 387 (1968).
[CrossRef]

Other (5)

N. A. Phillips, “Results of Comparative Simulation Studies on AMTS and HIRS Conducted by NASA and NOAA,” to be published.

J. Susskind, J. Rosenfield, D. Reuter, M. T. Chahine, “The GLAS Physical Inversion Method for Analysis of HIRS 2/MSU Sounding Data,” NASA Tech. Memo. 84936 (1982).

M. T. Chahine, in Remote Sensing of Oceans and Atmospheres, A. Deepak, Ed. (Academic, New York, 1980), p. 411.
[CrossRef]

M. T. Chahine, in Inversion Methods in Atmospheric Remote Sounding, A. Deepak, Ed. (Academic, New York, 1977), p. 67.

M. T. Chahine, in (COSPAR) Remote Sounding of the Atmosphere from Space, H. J. Bolle, Ed. (Pergamon, New York, 1979), p. 129.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Contribution function for the AMTS temperature sounding channels at nadir for U.S. standard atmosphere.

Fig. 2
Fig. 2

Skin-surface temperature sensitivity to noise for the case of Ts = 300 K.

Fig. 3
Fig. 3

Weighting function for the AMTS water vapor channels at nadir for U.S. standard atmosphere.

Fig. 4
Fig. 4

AMTS clear column performance as a function of system noise.

Fig. 5
Fig. 5

AMTS performance with clouds as a function of system noise.

Fig. 6
Fig. 6

AMTS system functional block diagram.

Fig. 7
Fig. 7

Generalized spectrometer configuration.

Fig. 8
Fig. 8

Grating spectrometer (baseline IV) optical layout.

Fig. 9
Fig. 9

Footprint scan geometry: the half-scans are from nadir to +48°

Tables (6)

Tables Icon

Table I AMTS Narrow Bandpass Channels

Tables Icon

Table II Comparison of Halfwidths of Contribution Functions

Tables Icon

Table III Contamination Effects of O3 and H2O on the Observed Brightness Temperature

Tables Icon

Table IV Differences Between Sea–Surface and Brightness Temperatures

Tables Icon

Table V AMTS Instrument Requirements

Tables Icon

Table VI Random Radiometric Error Summary per Footprint Element

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

I ¯ ( ν , θ ) = I s ( ν , θ ) + I a ( ν , θ ) + I d ( ν , θ ) + I h ( ν , θ ) ,
I ¯ ( ν , θ ) = I ˜ 1 ( ν , θ ) + η 1 [ I ˜ 1 ( ν , θ ) - I ˜ 2 ( ν , θ ) ] + η 2 [ I ˜ 1 ( ν , θ ) - I ˜ 3 ( ν , θ ) ] + ,
I s ( ν , θ ) = s ( ν , θ ) B ( ν , T s ) τ ( ν , θ , p s ) ,
B ( ν , T ) = a ν 3 / [ exp ( b ν / T ) - 1 ] .
I a ( ν , θ ) = p s 0 B [ ν , T ( p ) ] τ ( ν , θ , p ) ln p d ln p ,
I d ( ν , θ ) = ρ s ( ν , θ ) I a ( ν ) τ ( ν , θ , p ) ,
ρ s ( ν , θ ) = 1 - s ( ν , θ ) .
I h ( ν , θ ) = H h ( ν ) cos θ h τ ( ν , θ h , p s ) ρ s ( ν ) τ ( ν , θ , p s ) ,
NEN ν = A d A Ω · 1 τ F c · 1 D * · 1 2 T d · 1 Δ ν ,
A d A Ω = G H G w α A g α · F s Δ ν ( d α / d ν ) · F d F / No . N · cos β cos α + F s 2 cos α cos β ( S w α S h α ) 2 .
A d A Ω = T H T w A t · R IFOV h · F d F / No . N · ( IFOV h IFOV w ) 2 cos β cos α + F s 2 cos α cos β ,             IFOV h IFOV w
A d A Ω = T H T w A t · R IFOV w · F d F / No . N · cos β cos α + F s 2 cos α cos β ( IFOV w IFOV h ) 2 ,             IFOV w IFOV h
F d = ( f c β ) 2 f d ( S β 0 - f c β ) + ( f c β ) 2 = detector size factor , F s = S w β S w α i = slit factor ,
IFOV max T H T w A t 1 R ,
m λ a = sin ( α + α s ) + sin ( β + β s + β ) ,
ν = m a [ sin ( α + α s ) + sin ( β + β s ) ] .

Metrics