Abstract

A single-mode fiber Faraday rotator is proposed and fabricated by using a paramagnetic glass with a high Verdet constant. The Faraday rotator is a W-fiber with three layers, namely, core, inner cladding, and outer cladding. To make the fiber FR-5 is used as the starting material. The Verdet constant of the rotator is −0.25 min/Oe·cm at a 0.633-μm wavelength. The rotator can be used in a fiber isolator.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kawakami, K. Shiraishi, “Components for Fiber-type Isolator,” in Proceedings, Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June1983).
  2. S. Kawakami, Appl. Opt. 22, 2426 (1983).
    [CrossRef] [PubMed]
  3. A. M. Smith, Appl. Opt. 17, 52 (1978).
    [CrossRef] [PubMed]
  4. E. Turner, R. Stolen, Opt. Lett. 6, 322 (1981).
    [CrossRef] [PubMed]
  5. R. H. Stolen, E. H. Turner, Appl. Opt. 19, 842 (1980).
    [CrossRef] [PubMed]
  6. A. Smith, Electron. Lett. 16, 206 (1980).
    [CrossRef]
  7. T. Okoshi, W. Nobis, M. Hayashi, K. Kikuchi, “Optical Fiber Isolator,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (May1983) (in Japanese), paper MW83-11.
  8. Hoya Faraday Rotator Glass Report, Hoya Corp., Nishi-Shinjuku-Showa Bld. 13-12, 1 chome Nishi-Shinjuku Shinjuku-ku, Tokyo, 160 Japan.
  9. S. Kawakami, Y. Kikuchi, S. Nishida, “Fiber Faraday Rotator,” at Conference on the Special Project Research on Optical Guided-wave Electronics, S4 (July 1979) (in Japanese).
  10. Y. Kikuchi, Y. Aizawa, S. Kawakami, Rep. Electr. Commun. Eng. Convers., Tohoku Univ.49, 56 (1980) (in Japanese).
  11. S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
    [CrossRef]
  12. M. Seki, K. Kobayashi, A. Ueki, “Optical Isolators for Fiber-optic Communications,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (Feb.1979) (in Japanese), paper OQE78-133.

1983 (1)

1981 (1)

1980 (2)

1978 (1)

1974 (1)

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

Aizawa, Y.

Y. Kikuchi, Y. Aizawa, S. Kawakami, Rep. Electr. Commun. Eng. Convers., Tohoku Univ.49, 56 (1980) (in Japanese).

Hayashi, M.

T. Okoshi, W. Nobis, M. Hayashi, K. Kikuchi, “Optical Fiber Isolator,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (May1983) (in Japanese), paper MW83-11.

Kawakami, S.

S. Kawakami, Appl. Opt. 22, 2426 (1983).
[CrossRef] [PubMed]

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

S. Kawakami, K. Shiraishi, “Components for Fiber-type Isolator,” in Proceedings, Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June1983).

S. Kawakami, Y. Kikuchi, S. Nishida, “Fiber Faraday Rotator,” at Conference on the Special Project Research on Optical Guided-wave Electronics, S4 (July 1979) (in Japanese).

Y. Kikuchi, Y. Aizawa, S. Kawakami, Rep. Electr. Commun. Eng. Convers., Tohoku Univ.49, 56 (1980) (in Japanese).

Kikuchi, K.

T. Okoshi, W. Nobis, M. Hayashi, K. Kikuchi, “Optical Fiber Isolator,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (May1983) (in Japanese), paper MW83-11.

Kikuchi, Y.

S. Kawakami, Y. Kikuchi, S. Nishida, “Fiber Faraday Rotator,” at Conference on the Special Project Research on Optical Guided-wave Electronics, S4 (July 1979) (in Japanese).

Y. Kikuchi, Y. Aizawa, S. Kawakami, Rep. Electr. Commun. Eng. Convers., Tohoku Univ.49, 56 (1980) (in Japanese).

Kobayashi, K.

M. Seki, K. Kobayashi, A. Ueki, “Optical Isolators for Fiber-optic Communications,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (Feb.1979) (in Japanese), paper OQE78-133.

Nishida, S.

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

S. Kawakami, Y. Kikuchi, S. Nishida, “Fiber Faraday Rotator,” at Conference on the Special Project Research on Optical Guided-wave Electronics, S4 (July 1979) (in Japanese).

Nobis, W.

T. Okoshi, W. Nobis, M. Hayashi, K. Kikuchi, “Optical Fiber Isolator,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (May1983) (in Japanese), paper MW83-11.

Okoshi, T.

T. Okoshi, W. Nobis, M. Hayashi, K. Kikuchi, “Optical Fiber Isolator,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (May1983) (in Japanese), paper MW83-11.

Seki, M.

M. Seki, K. Kobayashi, A. Ueki, “Optical Isolators for Fiber-optic Communications,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (Feb.1979) (in Japanese), paper OQE78-133.

Shiraishi, K.

S. Kawakami, K. Shiraishi, “Components for Fiber-type Isolator,” in Proceedings, Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June1983).

Smith, A.

A. Smith, Electron. Lett. 16, 206 (1980).
[CrossRef]

Smith, A. M.

Stolen, R.

Stolen, R. H.

Turner, E.

Turner, E. H.

Ueki, A.

M. Seki, K. Kobayashi, A. Ueki, “Optical Isolators for Fiber-optic Communications,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (Feb.1979) (in Japanese), paper OQE78-133.

Appl. Opt. (3)

Electron. Lett. (1)

A. Smith, Electron. Lett. 16, 206 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Kawakami, S. Nishida, IEEE J. Quantum Electron. QE-10, 879 (1974).
[CrossRef]

Opt. Lett. (1)

Other (6)

M. Seki, K. Kobayashi, A. Ueki, “Optical Isolators for Fiber-optic Communications,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (Feb.1979) (in Japanese), paper OQE78-133.

T. Okoshi, W. Nobis, M. Hayashi, K. Kikuchi, “Optical Fiber Isolator,” in Technical Digest, Institute of Electronic Communication Engineers, Japan (May1983) (in Japanese), paper MW83-11.

Hoya Faraday Rotator Glass Report, Hoya Corp., Nishi-Shinjuku-Showa Bld. 13-12, 1 chome Nishi-Shinjuku Shinjuku-ku, Tokyo, 160 Japan.

S. Kawakami, Y. Kikuchi, S. Nishida, “Fiber Faraday Rotator,” at Conference on the Special Project Research on Optical Guided-wave Electronics, S4 (July 1979) (in Japanese).

Y. Kikuchi, Y. Aizawa, S. Kawakami, Rep. Electr. Commun. Eng. Convers., Tohoku Univ.49, 56 (1980) (in Japanese).

S. Kawakami, K. Shiraishi, “Components for Fiber-type Isolator,” in Proceedings, Conference on Integrated Optics and Optical Fiber Communication, Tokyo (June1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical isolators: (a) conventional bulk isolator; (b) fiber isolator using a proposed FFR.

Fig. 2
Fig. 2

Configuration of the fiber Faraday rotator.

Fig. 3
Fig. 3

Refractive-index profile near the core (a thin slice interferogram of the preform).

Fig. 4
Fig. 4

Near-field pattern of the single-mode FFR. Diameters of the core, inner cladding, and outer cladding are 5.6, 25, and 250 μm, respectively.

Fig. 5
Fig. 5

Faraday effect of the FFR. The Verdet constant of the FFR is −0.25 min/Oe · cm.

Fig. 6
Fig. 6

Temperature dependence of the isolation and excess insertion loss around 20°C.

Fig. 7
Fig. 7

Fabrication process for a fiber-type isolator: (a) grooves are cut on a FFR and then (b) multilayers are deposited in the grooves.

Fig. 8
Fig. 8

Schematic arrangement of the FFR, polarizer, and analyzer.

Fig. 9
Fig. 9

Faraday rotation angle for zero insertion loss or infinite isolation as a function of phase retardation.

Fig. 10
Fig. 10

Isolation and insertion loss as a function of phase retardation under the conditions of zero insertion loss and infinite isolation, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( E X E Y ) = ( cos Θ 1 sin Θ 1 - sin Θ 1 cos Θ 1 ) ( A - B B A * ) ( cos Θ 0 sin Θ 0 ) E 0 exp ( j ω t ) ,
A = cos ( ϕ / 2 ) + j cos χ sin ( ϕ / 2 ) , B = sin χ sin ( ϕ / 2 ) , ( ϕ / 2 ) 2 = ( δ / 2 ) 2 + F 2 , tan χ = F / ( δ / 2 ) .
I 1 = E X 2 E 0 2 = [ a cos ( Θ 1 - Θ 0 ) + c sin ( Θ 1 - Θ 0 ) ] 2 + b 2 cos 2 ( Θ 1 + Θ 0 ) ,
a = cos ( ϕ / 2 ) , b = cos χ sin ( ϕ / 2 ) , c = sin χ sin ( ϕ / 2 ) .
c - c , Θ 0 - Θ 1 , Θ 1 - Θ 0 .
L = - 10 log I 1 ,
I = - 10 log ( I 2 / I 1 ) .
tan Θ 0 = a ± a 2 + c 2 c ,
tan Θ 1 = - tan Θ 0 .
tan Θ 0 = - a ± a 2 + c 2 c ,
tan Θ 1 = a ± a 2 + c 2 c ,

Metrics