Abstract

Azimuthally dependent shortwave radiance in an atmosphere–ocean system is calculated for different types and concentrations of suspended matter in ocean and atmosphere. The transfer code, the matrix-operator method, is also applied to a rough ocean surface. With emphasis on remote sensing of oceanic constituents conditions for measurements are simulated to estimate the contribution of phytoplankton, sediment, and yellow substances to the ocean-leaving radiance within the 0.415–0.740-μm wavelength interval. The masking of these upward radiances by surface reflection and atmospheric extinction is discussed. In most conditions upward spectral radiance in the nadir direction usually contains the highest proportion of the oceanic underlight, even for an ocean surface roughened by 7-m/sec wind speed at all sun elevations below the mid-latitude noon condition.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Hovis, K. C. Leung, Opt. Eng. 16, 158 (1977).
    [CrossRef]
  2. E. Raschke, Beitr. Phys. Atmos. 45, 1 (1972).
  3. G. W. Kattawar, T. J. Humphreys, Appl. Opt. 15, 273 (1976).
    [CrossRef] [PubMed]
  4. H. R. Gordon, Appl. Opt. 17, 1893 (1978).
    [CrossRef] [PubMed]
  5. H. Quenzel, M. Kaestner, Appl. Opt. 19, 1338 (1980).
    [CrossRef] [PubMed]
  6. H. R. Gordon, Science 210, 4465, 63 (1980).
    [CrossRef]
  7. G. N. Plass, G. W. Kattawar, F. E. Catchings, Appl. Opt. 12, 314 (1973).
    [CrossRef] [PubMed]
  8. S. Chandrasekar, Radiative Transfer (Oxford U.P., London, 1950).
  9. J. H. Fischer, “Fernerkundung von Schwebstofen im Ozean,” Hamburger Geophysikalische Einzelschriften 65, 205 (1983).
  10. G. N. Plass, T. J. Humphreys, G. W. Kattawar, Appl. Opt. 20, 917 (1981).
    [CrossRef] [PubMed]
  11. C. Cox, W. Munk, J. Opt. Soc. Am. 44, 838 (1954).
    [CrossRef]
  12. H. Neckel, D. Labs, Sol. Phys. 74, 231 (1981).
    [CrossRef]
  13. G. Haenel, H. Bullrich, Beitr. Phys. Atmos. 51, 129 (1978).
  14. E. P. Shettle, R. W. Fenn, AGARD Conf. Proc. 183 (1976).
  15. A. Morel, Optical Properties of Pure Water and Pure Sea Water, N. G. Jerlov, E. Steemann Nielsen, Ed. (Academic, New York, 1974), p. 494.
  16. N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).
  17. L. Prieur, S. Sathyendranath, Linmol. Oceanogr. 26, 671 (1981).
    [CrossRef]
  18. N. K. Hojerslev, in Proceedings, Workshop on Eurasep OCS Experiment (1979), p. 13.
  19. R. Klotz, Reports Sonderforschungsbereich 95, No. 46 (Kiel U., 1978).
  20. G. N. Plass, G. W. Kattawar, J. A. Guinn, Appl. Opt. 14, 1924 (1975).
    [CrossRef] [PubMed]
  21. R. C. Smith, in Structure of Solar Radiation in the Upper Layers of the Sea, N. G. Jerlov, E. Steemann Nielson, Eds. (Academic, New York, 1974), p. 494.

1983

J. H. Fischer, “Fernerkundung von Schwebstofen im Ozean,” Hamburger Geophysikalische Einzelschriften 65, 205 (1983).

1981

G. N. Plass, T. J. Humphreys, G. W. Kattawar, Appl. Opt. 20, 917 (1981).
[CrossRef] [PubMed]

H. Neckel, D. Labs, Sol. Phys. 74, 231 (1981).
[CrossRef]

L. Prieur, S. Sathyendranath, Linmol. Oceanogr. 26, 671 (1981).
[CrossRef]

1980

1978

H. R. Gordon, Appl. Opt. 17, 1893 (1978).
[CrossRef] [PubMed]

G. Haenel, H. Bullrich, Beitr. Phys. Atmos. 51, 129 (1978).

1977

W. A. Hovis, K. C. Leung, Opt. Eng. 16, 158 (1977).
[CrossRef]

1976

G. W. Kattawar, T. J. Humphreys, Appl. Opt. 15, 273 (1976).
[CrossRef] [PubMed]

E. P. Shettle, R. W. Fenn, AGARD Conf. Proc. 183 (1976).

1975

1973

1972

E. Raschke, Beitr. Phys. Atmos. 45, 1 (1972).

1954

Bullrich, H.

G. Haenel, H. Bullrich, Beitr. Phys. Atmos. 51, 129 (1978).

Catchings, F. E.

Chandrasekar, S.

S. Chandrasekar, Radiative Transfer (Oxford U.P., London, 1950).

Cox, C.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, AGARD Conf. Proc. 183 (1976).

Fischer, J. H.

J. H. Fischer, “Fernerkundung von Schwebstofen im Ozean,” Hamburger Geophysikalische Einzelschriften 65, 205 (1983).

Gordon, H. R.

Guinn, J. A.

Haenel, G.

G. Haenel, H. Bullrich, Beitr. Phys. Atmos. 51, 129 (1978).

Hojerslev, N. K.

N. K. Hojerslev, in Proceedings, Workshop on Eurasep OCS Experiment (1979), p. 13.

Hovis, W. A.

W. A. Hovis, K. C. Leung, Opt. Eng. 16, 158 (1977).
[CrossRef]

Humphreys, T. J.

Jerlov, N. G.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).

Kaestner, M.

Kattawar, G. W.

Klotz, R.

R. Klotz, Reports Sonderforschungsbereich 95, No. 46 (Kiel U., 1978).

Labs, D.

H. Neckel, D. Labs, Sol. Phys. 74, 231 (1981).
[CrossRef]

Leung, K. C.

W. A. Hovis, K. C. Leung, Opt. Eng. 16, 158 (1977).
[CrossRef]

Morel, A.

A. Morel, Optical Properties of Pure Water and Pure Sea Water, N. G. Jerlov, E. Steemann Nielsen, Ed. (Academic, New York, 1974), p. 494.

Munk, W.

Neckel, H.

H. Neckel, D. Labs, Sol. Phys. 74, 231 (1981).
[CrossRef]

Plass, G. N.

Prieur, L.

L. Prieur, S. Sathyendranath, Linmol. Oceanogr. 26, 671 (1981).
[CrossRef]

Quenzel, H.

Raschke, E.

E. Raschke, Beitr. Phys. Atmos. 45, 1 (1972).

Sathyendranath, S.

L. Prieur, S. Sathyendranath, Linmol. Oceanogr. 26, 671 (1981).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, AGARD Conf. Proc. 183 (1976).

Smith, R. C.

R. C. Smith, in Structure of Solar Radiation in the Upper Layers of the Sea, N. G. Jerlov, E. Steemann Nielson, Eds. (Academic, New York, 1974), p. 494.

AGARD Conf. Proc. 183

E. P. Shettle, R. W. Fenn, AGARD Conf. Proc. 183 (1976).

Appl. Opt.

Beitr. Phys. Atmos.

E. Raschke, Beitr. Phys. Atmos. 45, 1 (1972).

G. Haenel, H. Bullrich, Beitr. Phys. Atmos. 51, 129 (1978).

Hamburger Geophysikalische Einzelschriften

J. H. Fischer, “Fernerkundung von Schwebstofen im Ozean,” Hamburger Geophysikalische Einzelschriften 65, 205 (1983).

J. Opt. Soc. Am.

Linmol. Oceanogr.

L. Prieur, S. Sathyendranath, Linmol. Oceanogr. 26, 671 (1981).
[CrossRef]

Opt. Eng.

W. A. Hovis, K. C. Leung, Opt. Eng. 16, 158 (1977).
[CrossRef]

Science

H. R. Gordon, Science 210, 4465, 63 (1980).
[CrossRef]

Sol. Phys.

H. Neckel, D. Labs, Sol. Phys. 74, 231 (1981).
[CrossRef]

Other

N. K. Hojerslev, in Proceedings, Workshop on Eurasep OCS Experiment (1979), p. 13.

R. Klotz, Reports Sonderforschungsbereich 95, No. 46 (Kiel U., 1978).

A. Morel, Optical Properties of Pure Water and Pure Sea Water, N. G. Jerlov, E. Steemann Nielsen, Ed. (Academic, New York, 1974), p. 494.

N. G. Jerlov, Marine Optics (Elsevier, Amsterdam, 1976).

S. Chandrasekar, Radiative Transfer (Oxford U.P., London, 1950).

R. C. Smith, in Structure of Solar Radiation in the Upper Layers of the Sea, N. G. Jerlov, E. Steemann Nielson, Eds. (Academic, New York, 1974), p. 494.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Normalized absorption coefficients for chlorophyll (—) sediment (- - -), and yellow substance (· · · · ·). Reference wavelength is λ = 0.440 μm.

Fig. 2
Fig. 2

Polar diagram of the upward radiance just below the ocean surface (W m−2 sr−1μm−1). The ocean surface is roughened by a wind speed v = 1.4 m/sec, the solar zenith angle θ0 = 50.7°, ϕ = 0°, the wavelength λ = 0.565 μm, and the optical thickness of the atmosphere τA = 0.244: (a) clear ocean; (b) ocean with plankton (extinction coefficient a ex P = 0.2 m - 1).

Fig. 3
Fig. 3

Polar diagram of the upward radiance just below the ocean surface (W m−2 sr−1μm−1) (see Fig. 2): (a) plankton and sediment ( a ex P = a ex S = 0.2 m - 1); (b) plankton, sediment, and yellow substance [ a ex P = a ex S = 0.2 m - 1 , a a Y S ( 0.455 μ m ) = 0.105 m - 1].

Fig. 4
Fig. 4

Polar diagram of the upward radiance just below the ocean surface (W m−2 sr−1μm−1) (see Fig. 2), but λ = 0.415 μm: (a) clear ocean; (b) plankton, sediment, and yellow substance [ a ex P = a ex S = 0.2 m - 1 , a a Y S ( 0.445 μ m ) = 0.105 m - 1].

Fig. 5
Fig. 5

Upward radiance L just below a flat ocean surface (- - -) and at 2-m depth (—) in the principal plane (left) and perpendicular to the principal plane (right) for a clear ocean × and a turbid ocean with plankton, sediment, and yellow substance [ a ex P = a ex S = 0.2 m - 1 , a a Y S ( 0.445 μ m ) = 0.105 m - 1]; for other optical parameters, see Fig. 2.

Fig. 6
Fig. 6

Upward nadir radiance L just below a flat ocean surface for a solar zenith angle θ0 = 50.7°: (a) L as a function of wavelength λ for different combinations of plankton, sediment, and yellow substance concentations; clear ocean ×, plankton ( a ex P = 0.4 m - 1, ▲), sediment (aS = 0.4 m−1, ○), plankton and sediment ( a ex P = a ex S = 0.2 m - 1, •), and plankton, sediment, and yellow substance [ a ex P = a ex S = 0.2 m - 1 , a a Y S ( 0.445 μ m ) = 0.105 m - 1, ◇]. (b) Radiance differences caused by changing atmospheric turbidity; full curves for turbidity increase from τA = 0.244 to τA = 0.443, and dashed curves for turbidity decrease to τA = 0.15; for further details see Fig. 6(a).

Fig. 7
Fig. 7

Polar diagram of the upward radiance just above the ocean surface (W m−2 sr−1μm−1); see Fig. 2 but turbid ocean with plankton, sediment, and yellow substance: (a) rough ocean surface according to a wind speed v = 1.4 m/sec; (b) rough ocean surface according to a wind speed v = 7.0 m/sec.

Fig. 8
Fig. 8

Polar diagram of the upward radiance just above the ocean surface (W m−2 sr−1μm−1); see Fig. 2 but turbid ocean with plankton, sediment, and yellow substance and a solar zenith angle θ0 = 19.1°: (a) rough ocean surface according to a wind speed v = 1.4 m/sec; (b) rough ocean surface according to a wind speed v = 7.0 m/sec.

Fig. 9
Fig. 9

Polar diagram of the upward radiance at 10-km height (W m−2 sr−1μm−1). For further details see Fig. 2 but turbid ocean with plankton, sediment, and yellow substance: (a) solar zenith angle θ0 = 50.7°; (b) solar zenith angle θ0 = 19.1°.

Fig. 10
Fig. 10

Polar diagram of the upward radiance at 10-km height (W m−2 sr−1μm−1). For further details see Fig. 2 but turbid ocean with plankton, sediment, and yellow substance and a wavelength λ = 0.415 μm: (a) solar zenith angle θ0 = 50.7°; (b) solar zenith angle θ0 = 19.1°.

Fig. 11
Fig. 11

Upward nadir radiance L at 10-km height for a flat ocean surface and a solar zenith angle θ0 = 50.7°: (a) L as a function of wavelength λ for a clear ocean ×, a turbid ocean with sediment ( a ex S = 0.4 m - 1, ○), and a turbid ocean with plankton, sediment, and yellow substance ( a ex P = a ex S = 0.2 m - 1, ◇); the lower curve is for just below the ocean surface. (b) Radiance differences caused by changing atmospheric turbidity; see Fig. 6(b).

Fig. 12
Fig. 12

Proportion of underlight to the total upward nadir radiance in percent just above the ocean (—), at 1 km (- - -), and at 10-km height (· · · · ·) via the wavelength λ; a clear ocean × and a turbid ocean with plankton, sediment, and plankton ◇ is assumed; in addition the turbid ocean case with a rough ocean surface (v = 7.0 m/sec) is shown ◆; for further details see Fig. 2.

Fig. 13
Fig. 13

Reduction of the ocean leaving nadir radiance due to atmospheric aerosol absorption and scattering in percent via the wavelength λ; a flat ocean surface, a solar zenith angle θ0 = 50.7°, and an atmospheric turbidity τA = 0.244 are assumed; just above the ocean surface (—), at 1 km (- - -), and at 10-km height (· · · · ·).

Fig. 14
Fig. 14

Polar diagram of the proportion of underlight to the total upward radiance in percent; see Fig. 2, but a turbid ocean with plankton, sediment, and yellow substance is assumed: (a) at 1-km height; (b) at 10-km height.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( μ d d τ + 1 ) L ( τ , μ , ϕ ) = ω 0 ( τ ) 0 2 π - 1 1 L ( τ , μ , ϕ ) P ( τ ; μ , ϕ ; μ , ϕ ) d μ d ϕ + ω 0 ( τ ) π F 0 P ( τ ; μ , ϕ ; μ 0 , ϕ 0 ) exp ( - τ / μ 0 ) ,
L ( μ , ϕ ) = m ˜ = 0 N L m ˜ ( μ ) cos m ˜ ( ϕ 0 - ϕ ) ;
p ( Z x , Z y ) δ Z x δ Z y = 1 π σ 2 exp [ - ( Z x 2 + Z y 2 ) / σ 2 ] δ Z x δ Z y
a a Y S ( λ ) = a a Y S ( 0.450 ) exp [ - 14.0 ( λ - 0.450 ) ] .

Metrics