Abstract

Measurements have been made of the IR radiation from monodisperse optically absorbing spherical particles of di-2-ethylhexyl sebacate. The purpose was to validate the Mie emission theory for particles that are small compared with the radiation wavelength. In contradiction to the Mie theory, McGregor has theoretically concluded that radiation absorption or emission is not possible at wavelengths longer than 2π times the particle diameter for spherical particles. The present results on monodisperse spherical particles of 3, 1, and 0.5 μm emitting at a wavelength of 3.4 μm support the Mie theory predictions.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, Ann. Phys. Paris 25, 377 (1908).
    [CrossRef]
  2. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  3. M. Bartholdi, G. C. Salzman, R. D. Hiebert, M. Kerker, Appl. Opt. 19, 1573 (1980).
    [CrossRef] [PubMed]
  4. D. C. Look, Appl. Opt. 20, 2346 (1981).
    [CrossRef] [PubMed]
  5. A. B. Pluchino, S. S. Goldberg, J. M. Dowling, C. M. Randall, Appl. Opt. 19, 3370 (1980).
    [CrossRef] [PubMed]
  6. J. D. Eversole, D. M. Mann, Bull. Am. Phys. Soc. 26, 14 (1981).
  7. V. S. Calia, W. Konopka, R. A. Reed, R. A. Oman, “Shock Tube Measurements of IR Radiation in Hot Gas/Particle Mixtures,” in Shock Tubes and Waves, C. E. Treanor, J. G. Hall, Eds. (State University of New York Press, Albany, 1982), pp. 673–681.
  8. W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
    [CrossRef]
  9. H. P. Baltes, Infrared Phys. 16, 1 (1976).
    [CrossRef]
  10. H. P. Baltes, Phys. Rev. A 6, 2252 (1972).
    [CrossRef]
  11. B. Steinle, H. P. Baltes, M. Pabst, Phys. Rev. A 12, 1519 (1975).
    [CrossRef]
  12. W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 26, 578 (1981).
  13. W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 27, 495 (1982).
  14. D. Sinclair, V. K. La Mer, Chem. Rev. 44, 245 (1949).
    [CrossRef] [PubMed]
  15. D. Sinclair, J. Colloid Interface Sci. 69, 430 (1979).
    [CrossRef]
  16. W. G. Egan, Appl. Opt. 21, 1445 (1982).
    [CrossRef] [PubMed]
  17. M. Kerker, Adv. Colloid Interface Sci. 5, 105 (1975).
    [CrossRef]
  18. R. Balian, C. Block, Ann. Phys. Paris 64, 271 (1971).
    [CrossRef]

1982

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 27, 495 (1982).

W. G. Egan, Appl. Opt. 21, 1445 (1982).
[CrossRef] [PubMed]

1981

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 26, 578 (1981).

D. C. Look, Appl. Opt. 20, 2346 (1981).
[CrossRef] [PubMed]

J. D. Eversole, D. M. Mann, Bull. Am. Phys. Soc. 26, 14 (1981).

1980

1979

D. Sinclair, J. Colloid Interface Sci. 69, 430 (1979).
[CrossRef]

1978

W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
[CrossRef]

1976

H. P. Baltes, Infrared Phys. 16, 1 (1976).
[CrossRef]

1975

M. Kerker, Adv. Colloid Interface Sci. 5, 105 (1975).
[CrossRef]

B. Steinle, H. P. Baltes, M. Pabst, Phys. Rev. A 12, 1519 (1975).
[CrossRef]

1972

H. P. Baltes, Phys. Rev. A 6, 2252 (1972).
[CrossRef]

1971

R. Balian, C. Block, Ann. Phys. Paris 64, 271 (1971).
[CrossRef]

1949

D. Sinclair, V. K. La Mer, Chem. Rev. 44, 245 (1949).
[CrossRef] [PubMed]

1908

G. Mie, Ann. Phys. Paris 25, 377 (1908).
[CrossRef]

Balian, R.

R. Balian, C. Block, Ann. Phys. Paris 64, 271 (1971).
[CrossRef]

Baltes, H. P.

H. P. Baltes, Infrared Phys. 16, 1 (1976).
[CrossRef]

B. Steinle, H. P. Baltes, M. Pabst, Phys. Rev. A 12, 1519 (1975).
[CrossRef]

H. P. Baltes, Phys. Rev. A 6, 2252 (1972).
[CrossRef]

Bartholdi, M.

Block, C.

R. Balian, C. Block, Ann. Phys. Paris 64, 271 (1971).
[CrossRef]

Calia, V. S.

V. S. Calia, W. Konopka, R. A. Reed, R. A. Oman, “Shock Tube Measurements of IR Radiation in Hot Gas/Particle Mixtures,” in Shock Tubes and Waves, C. E. Treanor, J. G. Hall, Eds. (State University of New York Press, Albany, 1982), pp. 673–681.

Dowling, J. M.

Egan, W. G.

W. G. Egan, Appl. Opt. 21, 1445 (1982).
[CrossRef] [PubMed]

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 27, 495 (1982).

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 26, 578 (1981).

Eversole, J. D.

J. D. Eversole, D. M. Mann, Bull. Am. Phys. Soc. 26, 14 (1981).

Goldberg, S. S.

Hiebert, R. D.

Hilgeman, T.

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 27, 495 (1982).

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 26, 578 (1981).

Kerker, M.

Konopka, W.

V. S. Calia, W. Konopka, R. A. Reed, R. A. Oman, “Shock Tube Measurements of IR Radiation in Hot Gas/Particle Mixtures,” in Shock Tubes and Waves, C. E. Treanor, J. G. Hall, Eds. (State University of New York Press, Albany, 1982), pp. 673–681.

La Mer, V. K.

D. Sinclair, V. K. La Mer, Chem. Rev. 44, 245 (1949).
[CrossRef] [PubMed]

Look, D. C.

Mann, D. M.

J. D. Eversole, D. M. Mann, Bull. Am. Phys. Soc. 26, 14 (1981).

McGregor, W. K.

W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
[CrossRef]

Mie, G.

G. Mie, Ann. Phys. Paris 25, 377 (1908).
[CrossRef]

Oman, R. A.

V. S. Calia, W. Konopka, R. A. Reed, R. A. Oman, “Shock Tube Measurements of IR Radiation in Hot Gas/Particle Mixtures,” in Shock Tubes and Waves, C. E. Treanor, J. G. Hall, Eds. (State University of New York Press, Albany, 1982), pp. 673–681.

Pabst, M.

B. Steinle, H. P. Baltes, M. Pabst, Phys. Rev. A 12, 1519 (1975).
[CrossRef]

Pluchino, A. B.

Randall, C. M.

Reed, R. A.

V. S. Calia, W. Konopka, R. A. Reed, R. A. Oman, “Shock Tube Measurements of IR Radiation in Hot Gas/Particle Mixtures,” in Shock Tubes and Waves, C. E. Treanor, J. G. Hall, Eds. (State University of New York Press, Albany, 1982), pp. 673–681.

Salzman, G. C.

Sinclair, D.

D. Sinclair, J. Colloid Interface Sci. 69, 430 (1979).
[CrossRef]

D. Sinclair, V. K. La Mer, Chem. Rev. 44, 245 (1949).
[CrossRef] [PubMed]

Steinle, B.

B. Steinle, H. P. Baltes, M. Pabst, Phys. Rev. A 12, 1519 (1975).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Adv. Colloid Interface Sci.

M. Kerker, Adv. Colloid Interface Sci. 5, 105 (1975).
[CrossRef]

Ann. Phys. Paris

R. Balian, C. Block, Ann. Phys. Paris 64, 271 (1971).
[CrossRef]

G. Mie, Ann. Phys. Paris 25, 377 (1908).
[CrossRef]

Appl. Opt.

Bull. Am. Phys. Soc.

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 26, 578 (1981).

W. G. Egan, T. Hilgeman, Bull. Am. Phys. Soc. 27, 495 (1982).

J. D. Eversole, D. M. Mann, Bull. Am. Phys. Soc. 26, 14 (1981).

Chem. Rev.

D. Sinclair, V. K. La Mer, Chem. Rev. 44, 245 (1949).
[CrossRef] [PubMed]

Infrared Phys.

H. P. Baltes, Infrared Phys. 16, 1 (1976).
[CrossRef]

J. Colloid Interface Sci.

D. Sinclair, J. Colloid Interface Sci. 69, 430 (1979).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

W. K. McGregor, J. Quant. Spectrosc. Radiat. Transfer 19, 659 (1978).
[CrossRef]

Phys. Rev. A

H. P. Baltes, Phys. Rev. A 6, 2252 (1972).
[CrossRef]

B. Steinle, H. P. Baltes, M. Pabst, Phys. Rev. A 12, 1519 (1975).
[CrossRef]

Other

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

V. S. Calia, W. Konopka, R. A. Reed, R. A. Oman, “Shock Tube Measurements of IR Radiation in Hot Gas/Particle Mixtures,” in Shock Tubes and Waves, C. E. Treanor, J. G. Hall, Eds. (State University of New York Press, Albany, 1982), pp. 673–681.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sinclair-La Mer aerosol generator used to produce spherical monodisperse aerosols of di-2-ethylhexyl sebacate at a specific temperature.

Fig. 2
Fig. 2

Optical system used for simultaneous sensing of 0.6328-μm scattered and 3.4-μm emitted radiation from a single spherical monodisperse sized particle of di-2-ethylhexyl sebacate.

Fig. 3
Fig. 3

Data handling arrangement for simultaneously recording scattered and emitted radiation from single particles; subsequent computer analysis and evaluation of the data are accomplished with the equipment shown.

Fig. 4
Fig. 4

Equilibrium radiation from small spherical blackbodies of diameter d; the radiation is emitted at wavelength λ and is normalized to the Planck function for large blackbodies.

Metrics