Abstract

A new formula for the lens index has been reported which is independent of the lens parameters. This proposed innovative nondestructive liquid-immersion technique is based on a coherent optical-processing configuration, and it is superior to the existing methods because the lens aperture, air equivalent factors for the glass cell and the liquids, lens aberrations, focusing errors, etc. are not of concern. The Fourier transform spectra of a grating as well as of a double slit have been employed to determine the lens index. The comparator and the x-y recorder have been separately used to calculate the distance between two successive diffraction orders in the back focal plane of the test lens. The present technique is quick to perform and easy to handle.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Glazebrook, Ed., A Dictionary of Applied Physics (Macmillan, New York, 1950), Vol. 4, pp. 130–136.
  2. G. Smith, Appl. Opt. 21, 755 (1982).
    [Crossref] [PubMed]
  3. R. Kohlrausch, Praktische Physik, Bd. I (Teubner, Stuttgart, 1968), p. 438.
  4. R. S. Kasana, K.-J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng., SPIE International Technical Conference, Geneva, 18–22 Apr. 1983.
  5. M. V. R. K. Murty, Appl. Opt. 3, 531 (1964).
    [Crossref]
  6. V. Ronchi, Appl. Opt. 3, 437 (1964).
    [Crossref]
  7. R. S. Kasana, K. Dayal, G. P. Bhatnagar, Acta Phys. Pol. A 53, 891 (1978).
  8. R. S. Kasana, K.-J. Rosenbruch, Opt. Commun. 46, 69 (1983).
    [Crossref]
  9. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 85.
  10. R. S. Kasana, K.-J. Rosenbruch, “Physikalisch-Technische Bundesanstalt, Bericht,” PTB Report, Optics Division PTB-Opt-12 ISSN 0341-6712 (May1983).

1983 (1)

R. S. Kasana, K.-J. Rosenbruch, Opt. Commun. 46, 69 (1983).
[Crossref]

1982 (1)

1978 (1)

R. S. Kasana, K. Dayal, G. P. Bhatnagar, Acta Phys. Pol. A 53, 891 (1978).

1964 (2)

Bhatnagar, G. P.

R. S. Kasana, K. Dayal, G. P. Bhatnagar, Acta Phys. Pol. A 53, 891 (1978).

Dayal, K.

R. S. Kasana, K. Dayal, G. P. Bhatnagar, Acta Phys. Pol. A 53, 891 (1978).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 85.

Kasana, R. S.

R. S. Kasana, K.-J. Rosenbruch, Opt. Commun. 46, 69 (1983).
[Crossref]

R. S. Kasana, K. Dayal, G. P. Bhatnagar, Acta Phys. Pol. A 53, 891 (1978).

R. S. Kasana, K.-J. Rosenbruch, “Physikalisch-Technische Bundesanstalt, Bericht,” PTB Report, Optics Division PTB-Opt-12 ISSN 0341-6712 (May1983).

R. S. Kasana, K.-J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng., SPIE International Technical Conference, Geneva, 18–22 Apr. 1983.

Kohlrausch, R.

R. Kohlrausch, Praktische Physik, Bd. I (Teubner, Stuttgart, 1968), p. 438.

Murty, M. V. R. K.

Ronchi, V.

Rosenbruch, K.-J.

R. S. Kasana, K.-J. Rosenbruch, Opt. Commun. 46, 69 (1983).
[Crossref]

R. S. Kasana, K.-J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng., SPIE International Technical Conference, Geneva, 18–22 Apr. 1983.

R. S. Kasana, K.-J. Rosenbruch, “Physikalisch-Technische Bundesanstalt, Bericht,” PTB Report, Optics Division PTB-Opt-12 ISSN 0341-6712 (May1983).

Smith, G.

Acta Phys. Pol. A (1)

R. S. Kasana, K. Dayal, G. P. Bhatnagar, Acta Phys. Pol. A 53, 891 (1978).

Appl. Opt. (3)

Opt. Commun. (1)

R. S. Kasana, K.-J. Rosenbruch, Opt. Commun. 46, 69 (1983).
[Crossref]

Other (5)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968), p. 85.

R. S. Kasana, K.-J. Rosenbruch, “Physikalisch-Technische Bundesanstalt, Bericht,” PTB Report, Optics Division PTB-Opt-12 ISSN 0341-6712 (May1983).

R. Kohlrausch, Praktische Physik, Bd. I (Teubner, Stuttgart, 1968), p. 438.

R. S. Kasana, K.-J. Rosenbruch, Proc. Soc. Photo-Opt. Instrum. Eng., SPIE International Technical Conference, Geneva, 18–22 Apr. 1983.

R. Glazebrook, Ed., A Dictionary of Applied Physics (Macmillan, New York, 1950), Vol. 4, pp. 130–136.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical system used for evaluating the refractive index of a lens.

Fig. 2
Fig. 2

Graph of the separations of two successive diffraction orders (β) and the focal lengths (f) of the test lens with different liquids (β vs f).

Fig. 3
Fig. 3

Intensity recording in the Fourier transform plane using an X-Y recorder.

Fig. 4
Fig. 4

Grating diffraction patterns corresponding to different media in the glass cell.

Fig. 5
Fig. 5

Double slit diffraction patterns with different liquids.

Tables (2)

Tables Icon

Table I Experimental Observations

Tables Icon

Table II Experimental Observations

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

G ( x f , y f ) = A - + g ( x , y ) · exp [ - 2 π i f ( x x f + y y f ) ] d x d y ,
A = const exp [ i K 2 f ( x f 2 + y f ) ] 2 / ( i λ f ) .
β = λ f / 2 d ,
1 / f = const / β ,
( 1 / f ) = ( n - n L ) ( c 1 - c 2 ) + ( n - n L ) 2 t c 1 c 2 / n ,
1 f = const β = ( n - n L ) ( c 1 - c 2 ) + ( n - n L ) 2 t c 1 c 2 / n .
1 f i = const β i = ( n - n i ) ( c 1 - c 2 ) + ( n - n i ) 2 t c 1 c 2 / n ,
1 f i = const β j = ( n - n j ) ( c 1 - c 2 ) + ( n - n j ) 2 t c 1 c 2 / n .
n 2 ( 1 + K 12 ) ( β j - β i ) - n ( 1 + 2 K 12 ) ( n j β j - n i β i ) + K 12 ( n j 2 β j - n i 2 β i ) = 0 ,
n = ( n j β j - n i β i ) ( β j - β i ) [ 1 + - 1 ± 1 + α 2 ( 1 + K 12 ) ] ,
n = ( n j β j - n i β i ) ( β j - β i ) .
n = ( n j β j - n i β i ) ( β j - β i ) .
Y f = V m α S ,
Δ Y f = V m α Δ S .
β = ( 1 / 6 ) · Δ S .

Metrics