Abstract

An extensive program for the evaluation of the DIAL (differential absorption lidar) technique was performed. Measuring and evaluation routines for DIAL measurements on sulfur dioxide in different applications were made. Several field tests were performed with a mobile lidar system employing a Nd:YAG laser pumping a dye laser. Examples of measurements from the work are given. The practical aspects of the technique and the field of applications are discussed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. M. Hamilton, R. H. Varey, M. M. Millan, Atmos. Environ. 12, 127 (1978).
    [CrossRef]
  2. R. J. Exton, NASA Technical Paper 1014 (U.S. GPO, Washington, D.C., 1977).
  3. U. Platt, D. Perner, H. W. Paetz, J. Geophys. Res. 84, 6329 (1979).
    [CrossRef]
  4. R. M. Measures, in Analytical Laser Spectroscopy, N. Omenetto, Ed. (Wiley, New York, 1979).
  5. S. Svanberg, Contemp. Phys. 21, 541 (1980).
    [CrossRef]
  6. K. Fredriksson, “Laser Spectroscopy Applied in Studies of Alkali-Atom Structures and in Environmental Monitoring,” Ph.D. Dissertation, U. Gothenburg (1980).
  7. W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
    [CrossRef]
  8. J. M. Hoell, W. R. Wade, R. T. Thompson, International Conference on Environmental Sensing and Assessment, Las Vegas, 14–19 Sept. 1975.
  9. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979); K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, Göteborg Institute of Physics Report GIPR-150 (1977).
    [CrossRef] [PubMed]
  10. P. T. Woods, B. W. Jolliffe, B. R. Marx, Opt. Commun. 33, 281 (1980).
    [CrossRef]
  11. D. J. Brassington, Appl. Opt. 20, 3774 (1981).
    [CrossRef] [PubMed]
  12. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 20, 4181 (1981).
    [CrossRef] [PubMed]
  13. J. G. Hawley, L. D. Fletcher, G. F. Wallace, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983).
  14. K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” National Environmental Protection Board Report SNV PM 1624 (1982).
  15. K. A. Fredriksson, H. M. Hertz, to be published in Appl. Opt.
  16. M. Aldén, H. Edner, S. Svanberg, Opt. Lett. 7, 543 (1982); H. Edner, K. Fredriksson, H. Hertz, S. Svanberg, Lund Reports on Atomic Physics, LRAP-21 (1983).
    [CrossRef] [PubMed]
  17. M. Aldén, H. Edner, S. Svanberg, Opt. Lett. 7, 221 (1982).
    [CrossRef] [PubMed]

1982 (2)

1981 (2)

1980 (2)

P. T. Woods, B. W. Jolliffe, B. R. Marx, Opt. Commun. 33, 281 (1980).
[CrossRef]

S. Svanberg, Contemp. Phys. 21, 541 (1980).
[CrossRef]

1979 (2)

1978 (1)

P. M. Hamilton, R. H. Varey, M. M. Millan, Atmos. Environ. 12, 127 (1978).
[CrossRef]

1975 (1)

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Aldén, M.

Brassington, D. J.

Edner, H.

Exton, R. J.

R. J. Exton, NASA Technical Paper 1014 (U.S. GPO, Washington, D.C., 1977).

Fletcher, L. D.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983).

Fredriksson, K.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 20, 4181 (1981).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979); K. Fredriksson, B. Galle, A. Linder, K. Nyström, S. Svanberg, Göteborg Institute of Physics Report GIPR-150 (1977).
[CrossRef] [PubMed]

K. Fredriksson, “Laser Spectroscopy Applied in Studies of Alkali-Atom Structures and in Environmental Monitoring,” Ph.D. Dissertation, U. Gothenburg (1980).

K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” National Environmental Protection Board Report SNV PM 1624 (1982).

Fredriksson, K. A.

K. A. Fredriksson, H. M. Hertz, to be published in Appl. Opt.

Galle, B.

Grant, W. B.

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Hake, R. D.

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

Hamilton, P. M.

P. M. Hamilton, R. H. Varey, M. M. Millan, Atmos. Environ. 12, 127 (1978).
[CrossRef]

Hawley, J. G.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983).

Hertz, H. M.

K. A. Fredriksson, H. M. Hertz, to be published in Appl. Opt.

Hoell, J. M.

J. M. Hoell, W. R. Wade, R. T. Thompson, International Conference on Environmental Sensing and Assessment, Las Vegas, 14–19 Sept. 1975.

Jolliffe, B. W.

P. T. Woods, B. W. Jolliffe, B. R. Marx, Opt. Commun. 33, 281 (1980).
[CrossRef]

Marx, B. R.

P. T. Woods, B. W. Jolliffe, B. R. Marx, Opt. Commun. 33, 281 (1980).
[CrossRef]

Measures, R. M.

R. M. Measures, in Analytical Laser Spectroscopy, N. Omenetto, Ed. (Wiley, New York, 1979).

Millan, M. M.

P. M. Hamilton, R. H. Varey, M. M. Millan, Atmos. Environ. 12, 127 (1978).
[CrossRef]

Nyström, K.

Paetz, H. W.

U. Platt, D. Perner, H. W. Paetz, J. Geophys. Res. 84, 6329 (1979).
[CrossRef]

Perner, D.

U. Platt, D. Perner, H. W. Paetz, J. Geophys. Res. 84, 6329 (1979).
[CrossRef]

Platt, U.

U. Platt, D. Perner, H. W. Paetz, J. Geophys. Res. 84, 6329 (1979).
[CrossRef]

Svanberg, S.

Thompson, R. T.

J. M. Hoell, W. R. Wade, R. T. Thompson, International Conference on Environmental Sensing and Assessment, Las Vegas, 14–19 Sept. 1975.

Varey, R. H.

P. M. Hamilton, R. H. Varey, M. M. Millan, Atmos. Environ. 12, 127 (1978).
[CrossRef]

Wade, W. R.

J. M. Hoell, W. R. Wade, R. T. Thompson, International Conference on Environmental Sensing and Assessment, Las Vegas, 14–19 Sept. 1975.

Wallace, G. F.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983).

Woods, P. T.

P. T. Woods, B. W. Jolliffe, B. R. Marx, Opt. Commun. 33, 281 (1980).
[CrossRef]

Appl. Opt. (3)

Atmos. Environ. (1)

P. M. Hamilton, R. H. Varey, M. M. Millan, Atmos. Environ. 12, 127 (1978).
[CrossRef]

Contemp. Phys. (1)

S. Svanberg, Contemp. Phys. 21, 541 (1980).
[CrossRef]

J. Appl. Phys. (1)

W. B. Grant, R. D. Hake, J. Appl. Phys. 46, 3019 (1975).
[CrossRef]

J. Geophys. Res. (1)

U. Platt, D. Perner, H. W. Paetz, J. Geophys. Res. 84, 6329 (1979).
[CrossRef]

Opt. Commun. (1)

P. T. Woods, B. W. Jolliffe, B. R. Marx, Opt. Commun. 33, 281 (1980).
[CrossRef]

Opt. Lett. (2)

Other (7)

J. G. Hawley, L. D. Fletcher, G. F. Wallace, in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer, Berlin, 1983).

K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” National Environmental Protection Board Report SNV PM 1624 (1982).

K. A. Fredriksson, H. M. Hertz, to be published in Appl. Opt.

R. M. Measures, in Analytical Laser Spectroscopy, N. Omenetto, Ed. (Wiley, New York, 1979).

R. J. Exton, NASA Technical Paper 1014 (U.S. GPO, Washington, D.C., 1977).

J. M. Hoell, W. R. Wade, R. T. Thompson, International Conference on Environmental Sensing and Assessment, Las Vegas, 14–19 Sept. 1975.

K. Fredriksson, “Laser Spectroscopy Applied in Studies of Alkali-Atom Structures and in Environmental Monitoring,” Ph.D. Dissertation, U. Gothenburg (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Mobile DIAL system in a typical measurement situation at a paper mill.

Fig. 2
Fig. 2

Example of a SO2 DIAL measurement. The lidar was directed along a local street at a chemical industrial area. The lidar signals at the absorption and reference wavelengths are shown in the left diagrams, and at the upper right the resulting DIAL curve is displayed. The slope of this curve is determined by the SO2 concentration, which is calculated at the lower right. The concentration along the street is evaluated for a 50-m path, continuously swept with the distance.

Fig. 3
Fig. 3

Several measurements similar to Fig. 2 from time study of the concentration profile during a 2-h period. In the: measurements at 10.12 and 10.13 the concentration was seen to drastically increase. These profiles are also displayed in a smaller scale in the figure. The study is an example which shows the possibility of using the DIAL technique for rapid detection of sudden emissions.

Fig. 4
Fig. 4

Horizontal charting of SO2 concentrations in an area around a paper mill. The map of the distribution is made from several DIAL measurements in sixteen directions, which are indicated to the left.

Fig. 5
Fig. 5

Charting of a smokestack plume and diffuse emissions in a vertical section downwind of a chemical factory. The horizontal direction for the charting is given by the x axis of the diagram in the figure. The integrated contents and the wind velocity at different altitudes yield the flow of the gas.

Fig. 6
Fig. 6

Charting of SO2 concentrations in a vertical section in a form of presentation which displays the individual measurement results.

Fig. 7
Fig. 7

DIAL measurement of the SO2 flow from a large metallurgical plant. The integrated SO2 content for different vertical subsections is displayed. The flow is obtained by multiplying with the wind velocity.

Fig. 8
Fig. 8

Measurements of the integrated concentrations in a vertical section downwind of a chemical factory. The measurement is similar to the one displayed in Fig. 5, but the horizontal projections of the concentrated and diffuse plumes are shown.

Fig. 9
Fig. 9

Vertical and horizontal projections of a plume from a heating plant. This form of presentation has turned out to be well suited for rapid evaluations in field work and is also adapted to plume dispersion models.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P λ abs ( R ) P λ ref ( R ) = C exp { - 2 0 R [ σ ( λ abs ) - σ ( λ ref ) ] n ( r ) d r } ,
n ( r ) = { 2 ( R 2 - R 1 ) [ σ ( λ abs ) - σ ( λ ref ) ] } - 1 × ln P λ abs ( R 1 ) P λ ref ( R 2 ) P λ ref ( R 1 ) P λ abs ( R 2 ) .

Metrics