Abstract

This paper reviews various techniques for measuring the diameter of Gaussian beams and, in particular, those of ~1-μm diam. A description of measurement techniques for nonideal conditions is also included. A novel ruling used for beam-size measurement is discussed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Dickson, Opt. Eng. 18, 70 (1979).
  2. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, D. de la Claviere, E. A. Franke, J. M. Franke, Appl. Opt. 10, 2775 (1971).
    [CrossRef] [PubMed]
  3. Y. Suzaki, A. Tachibana, Appl. Opt. 14, 2809 (1975).
    [CrossRef] [PubMed]
  4. E. C. Broockman, L. D. Dickson, R. S. Fortenberrgy, Opt. Eng. 22, 643 (1983).
    [CrossRef]

1983 (1)

E. C. Broockman, L. D. Dickson, R. S. Fortenberrgy, Opt. Eng. 22, 643 (1983).
[CrossRef]

1979 (1)

L. D. Dickson, Opt. Eng. 18, 70 (1979).

1975 (1)

1971 (1)

Appl. Opt. (2)

Opt. Eng. (2)

L. D. Dickson, Opt. Eng. 18, 70 (1979).

E. C. Broockman, L. D. Dickson, R. S. Fortenberrgy, Opt. Eng. 22, 643 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of ruling used for measuring beam diameters.

Fig. 2
Fig. 2

Measurement of beam diameter using the Ronchi ruling method in reflection.

Fig. 3
Fig. 3

Knife-edge scan geometry.

Fig. 4
Fig. 4

Knife-edge scan derived from the ruling.

Fig. 5
Fig. 5

Nonideal knife-edge scan.

Fig. 6
Fig. 6

Velocity measurement.

Fig. 7
Fig. 7

Derivative of the knife-edge scan.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d / W = 2.2 K 0 + 1 ,
d W = 2.2 [ K L - ( R S / R E ) 1 - K L ( R S / R E ) ] + 1 ,
P ( X 0 - v t ) = ( 2 π ) 1 / 2 P 0 w X 0 - v t exp ( - 2 x 2 / w 2 ) d x ,
α = 2 x w ,             β = 2 w ( X 0 - v t ) ,
P ( X 0 - v t ) P 0 = ½ erfc ( β ) .
w = 0.7803 v ( t 2 - t 1 ) ,
P ( X 0 - v t ) = R S ( 2 π ) 1 / 2 P 0 w - X 0 - v t exp ( - 2 x 2 / w 2 ) d x + R E ( 2 π ) 1 / 2 P 0 w X 0 - v t exp ( - 2 x 2 / w 2 ) d x ,
P ( X 0 - v t ) = R E P 0 π β exp ( - α 2 ) d α + R S P 0 π β exp ( - α 2 ) d α ,
1 π β exp ( - α 2 ) d α = 1 - 1 π - β exp ( - α 2 ) d α ,
P ( X 0 - v t ) - P 0 R S P 0 R E - P 0 R S = ½ erfc ( β ) .
w = 2 π v ( P 0 P max ) ,
w = 2 π ( P 0 R E - P 0 R S P max ) v .

Metrics