Abstract

A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, A. A. Maradudin, T. S. Rahman, Phys. Rev. B 23, 2576 (1981).
    [CrossRef]
  2. R. F. Wallis, A. A. Maradudin, G. I. Stegeman, Appl. Phys. Lett. 42(9), 764 (1983).
    [CrossRef]
  3. G. I. Stegeman, R. F. Wallis, A. A. Maradudin, Opt. Lett. 8, 386 (1983).
    [CrossRef] [PubMed]
  4. A. A. Maradudin, R. F. Wallis, G. I. Stegeman, Solid State Commun. 46, 487 (1983).
    [CrossRef]
  5. G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, R. F. Wallis, Opt. Lett. 8, 626 (1983).
    [CrossRef] [PubMed]
  6. G. I. Stegeman, A. A. Maradudin, T. P. Shen, R. F. Wallis, unpublished work.
  7. V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Solid State Commun. 40, 687 (1981).
    [CrossRef]
  8. V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Zh. Eksp. Teor. Fiz. 81, 1828 (1981) [Sov. Phys. JETP 54, 968 (1981)].
  9. Z. Schlesinger, A. J. Sievers, Appl. Phys. Lett. 36(6), 410 (1980).
    [CrossRef]

1983 (4)

R. F. Wallis, A. A. Maradudin, G. I. Stegeman, Appl. Phys. Lett. 42(9), 764 (1983).
[CrossRef]

A. A. Maradudin, R. F. Wallis, G. I. Stegeman, Solid State Commun. 46, 487 (1983).
[CrossRef]

G. I. Stegeman, R. F. Wallis, A. A. Maradudin, Opt. Lett. 8, 386 (1983).
[CrossRef] [PubMed]

G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, R. F. Wallis, Opt. Lett. 8, 626 (1983).
[CrossRef] [PubMed]

1981 (3)

G. I. Stegeman, A. A. Maradudin, T. S. Rahman, Phys. Rev. B 23, 2576 (1981).
[CrossRef]

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Solid State Commun. 40, 687 (1981).
[CrossRef]

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Zh. Eksp. Teor. Fiz. 81, 1828 (1981) [Sov. Phys. JETP 54, 968 (1981)].

1980 (1)

Z. Schlesinger, A. J. Sievers, Appl. Phys. Lett. 36(6), 410 (1980).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Zh. Eksp. Teor. Fiz. 81, 1828 (1981) [Sov. Phys. JETP 54, 968 (1981)].

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Solid State Commun. 40, 687 (1981).
[CrossRef]

Glass, N. E.

Kravtsov, V. E.

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Solid State Commun. 40, 687 (1981).
[CrossRef]

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Zh. Eksp. Teor. Fiz. 81, 1828 (1981) [Sov. Phys. JETP 54, 968 (1981)].

Leskova, T. A.

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Zh. Eksp. Teor. Fiz. 81, 1828 (1981) [Sov. Phys. JETP 54, 968 (1981)].

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Solid State Commun. 40, 687 (1981).
[CrossRef]

Maradudin, A. A.

G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, R. F. Wallis, Opt. Lett. 8, 626 (1983).
[CrossRef] [PubMed]

G. I. Stegeman, R. F. Wallis, A. A. Maradudin, Opt. Lett. 8, 386 (1983).
[CrossRef] [PubMed]

A. A. Maradudin, R. F. Wallis, G. I. Stegeman, Solid State Commun. 46, 487 (1983).
[CrossRef]

R. F. Wallis, A. A. Maradudin, G. I. Stegeman, Appl. Phys. Lett. 42(9), 764 (1983).
[CrossRef]

G. I. Stegeman, A. A. Maradudin, T. S. Rahman, Phys. Rev. B 23, 2576 (1981).
[CrossRef]

G. I. Stegeman, A. A. Maradudin, T. P. Shen, R. F. Wallis, unpublished work.

Rahman, T. S.

G. I. Stegeman, A. A. Maradudin, T. S. Rahman, Phys. Rev. B 23, 2576 (1981).
[CrossRef]

Schlesinger, Z.

Z. Schlesinger, A. J. Sievers, Appl. Phys. Lett. 36(6), 410 (1980).
[CrossRef]

Shen, T. P.

G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, R. F. Wallis, Opt. Lett. 8, 626 (1983).
[CrossRef] [PubMed]

G. I. Stegeman, A. A. Maradudin, T. P. Shen, R. F. Wallis, unpublished work.

Sievers, A. J.

Z. Schlesinger, A. J. Sievers, Appl. Phys. Lett. 36(6), 410 (1980).
[CrossRef]

Stegeman, G. I.

R. F. Wallis, A. A. Maradudin, G. I. Stegeman, Appl. Phys. Lett. 42(9), 764 (1983).
[CrossRef]

G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, R. F. Wallis, Opt. Lett. 8, 626 (1983).
[CrossRef] [PubMed]

G. I. Stegeman, R. F. Wallis, A. A. Maradudin, Opt. Lett. 8, 386 (1983).
[CrossRef] [PubMed]

A. A. Maradudin, R. F. Wallis, G. I. Stegeman, Solid State Commun. 46, 487 (1983).
[CrossRef]

G. I. Stegeman, A. A. Maradudin, T. S. Rahman, Phys. Rev. B 23, 2576 (1981).
[CrossRef]

G. I. Stegeman, A. A. Maradudin, T. P. Shen, R. F. Wallis, unpublished work.

Wallis, R. F.

R. F. Wallis, A. A. Maradudin, G. I. Stegeman, Appl. Phys. Lett. 42(9), 764 (1983).
[CrossRef]

G. I. Stegeman, R. F. Wallis, A. A. Maradudin, Opt. Lett. 8, 386 (1983).
[CrossRef] [PubMed]

G. I. Stegeman, N. E. Glass, A. A. Maradudin, T. P. Shen, R. F. Wallis, Opt. Lett. 8, 626 (1983).
[CrossRef] [PubMed]

A. A. Maradudin, R. F. Wallis, G. I. Stegeman, Solid State Commun. 46, 487 (1983).
[CrossRef]

G. I. Stegeman, A. A. Maradudin, T. P. Shen, R. F. Wallis, unpublished work.

Appl. Phys. Lett. (2)

R. F. Wallis, A. A. Maradudin, G. I. Stegeman, Appl. Phys. Lett. 42(9), 764 (1983).
[CrossRef]

Z. Schlesinger, A. J. Sievers, Appl. Phys. Lett. 36(6), 410 (1980).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

G. I. Stegeman, A. A. Maradudin, T. S. Rahman, Phys. Rev. B 23, 2576 (1981).
[CrossRef]

Solid State Commun. (2)

A. A. Maradudin, R. F. Wallis, G. I. Stegeman, Solid State Commun. 46, 487 (1983).
[CrossRef]

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Solid State Commun. 40, 687 (1981).
[CrossRef]

Zh. Eksp. Teor. Fiz. (1)

V. M. Agranovich, V. E. Kravtsov, T. A. Leskova, Zh. Eksp. Teor. Fiz. 81, 1828 (1981) [Sov. Phys. JETP 54, 968 (1981)].

Other (1)

G. I. Stegeman, A. A. Maradudin, T. P. Shen, R. F. Wallis, unpublished work.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Structures studied in this paper. The metallized plates at x3 = d0 and x3 = −d make the electromagnetic modes in these structures discrete rather than continuous.

Fig. 2
Fig. 2

Total and surface polariton reflection and transmission coefficients as functions of the reduced path length L for the structure depicted in Fig. 1(a) with ɛ1 = 1 = ɛ2 and ɛ3 = 2. ωp/ω = 4. The half-thickness of the structure is d = 6.8(πc/ω). The number of intervals N = 56.

Fig. 3
Fig. 3

Total and surface polariton reflection and transmission coefficients as functions of the reduced path length L for the structure depicted in Fig. 1(b) with ɛ1 = 1 = ɛ2, ɛF = 2, and dF = 0.1(2πc/ω). ωp/ω = 4. The half-thickness of the structure is d = 4.8(πc/ω). The number of intervals N = 50.

Fig. 4
Fig. 4

Total and surface polariton reflection and transmission coefficients as functions of the reduced path length L for the structure depicted in Fig. 1(a) with ɛ1 = 1, ɛ2 = 4, and ɛ3 = 2. ωp/ω = 4. The half-thickness of the structure is d = 6.8(πc/ω). The number of intervals N = 54.

Fig. 5
Fig. 5

Radiation patterns for the reflected and transmitted bulk radiative modes for the structure assumed in obtaining Fig. 4.

Fig. 6
Fig. 6

Radiation patterns for the reflected and transmitted bulk radiative modes for the structure assumed in obtaining Fig. 2.

Fig. 7
Fig. 7

Radiation patterns for the reflected and transmitted bulk radiative modes for the structure used in obtaining Fig. 3. The solid and dashed lines represent the transmitted and reflected bulk modes, respectively. Each solid and dashed line extends back to the origin.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H < ( x , t ) = x ^ 2 [ H 2 ( 0 , 1 ) ( x 1 x 3 ω ) + r H ¯ 2 ( 0 , 1 ) ( x 1 x 3 ω ) + m ( > 0 ) R m H ¯ 2 ( m , 1 ) ( x 1 x 3 ω ) ] exp ( - i ω t ) ;
H ( x , t ) = x ^ 2 m [ A m H 2 ( m , 3 ) ( x 1 x 3 ω ) + B m H ¯ 2 ( m , 3 ) ( x 1 x 3 ω ) ] exp ( - i ω t ) ;
H > ( x , t ) = x ^ 2 [ t H 2 ( 0 , 2 ) ( x 1 x 3 ω ) + m ( > 0 ) T m H 2 ( m , 2 ) ( x 1 x 3 ω ) ] exp ( - i ω t ) .
R = - r 2 Re - d d 0 d x 3 E ¯ 3 ( 0 , 1 ) ( x 1 x 3 ω ) H ¯ 2 ( 0 , 1 ) ( x 1 x 3 ω ) * Re - d d 0 d x 3 E 3 ( 0 , 1 ) ( x 1 x 3 ω ) H 2 ( 0 , 1 ) ( x 1 x 3 ω ) * ;
T = t 2 Re - d d 0 d x 3 E 3 ( 0 , 2 ) ( x 1 x 3 ω ) H 2 ( 0 , 2 ) ( x 1 x 3 ω ) * Re - d d 0 d x 3 E 3 ( 0 , 1 ) ( x 1 x 3 ω ) H 2 ( 0 , 1 ) ( x 1 x 3 ω ) * .
1 2 Δ L ɛ 3 ω 2 β ( 0 , 3 ) c ,

Metrics