Abstract

The refractive indices n, power absorption constant α (cm−1), and percent transmission T of YAG and YLF were measured in the 10–100-cm−1 range. Only the percent transmission T of thin samples of the elpasolite hexachloride Cs2NaDyCl6 and hexafluoride Rb2NaYF6 was measured in the 10–400-cm−1 range since T was 2–3%. A brief discussion of the far-infrared (FIR) laser possibilities of rare-earth doped crystals is presented.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hadni et al., in Far Infrared Properties of Solids, S. S. Mitra, S. Nudelman, Eds. (Plenum, New York, 1970), pp. 535–560.
    [CrossRef]
  2. B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).
  3. R. J. Pressley, Ed., Handbook of Lasers (CRC Press, Cleveland, 1971).
  4. E. J. Danielewicz, P. D. Coleman, Appl. Opt. 13, 1164 (1974).
    [CrossRef] [PubMed]
  5. G. A. Slack et al., Phys. Rev. 177, 1308 (1969).
    [CrossRef]
  6. A. L. Harmer et al., Phys. Chem. Solids 30, 1483 (1969).
    [CrossRef]
  7. A. A. Kaminskii, Laser Crystals (Springer, New York, 1981).
  8. C. A. Morrison et al., J. Chem. Phys. 73, 2580 (1980).
    [CrossRef]

1980

C. A. Morrison et al., J. Chem. Phys. 73, 2580 (1980).
[CrossRef]

1974

1969

G. A. Slack et al., Phys. Rev. 177, 1308 (1969).
[CrossRef]

A. L. Harmer et al., Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Coleman, P. D.

Danielewicz, E. J.

Hadni, A.

A. Hadni et al., in Far Infrared Properties of Solids, S. S. Mitra, S. Nudelman, Eds. (Plenum, New York, 1970), pp. 535–560.
[CrossRef]

Harmer, A. L.

A. L. Harmer et al., Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, Laser Crystals (Springer, New York, 1981).

Morrison, C. A.

C. A. Morrison et al., J. Chem. Phys. 73, 2580 (1980).
[CrossRef]

Slack, G. A.

G. A. Slack et al., Phys. Rev. 177, 1308 (1969).
[CrossRef]

Wybourne, B. G.

B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).

Appl. Opt.

J. Chem. Phys.

C. A. Morrison et al., J. Chem. Phys. 73, 2580 (1980).
[CrossRef]

Phys. Chem. Solids

A. L. Harmer et al., Phys. Chem. Solids 30, 1483 (1969).
[CrossRef]

Phys. Rev.

G. A. Slack et al., Phys. Rev. 177, 1308 (1969).
[CrossRef]

Other

A. A. Kaminskii, Laser Crystals (Springer, New York, 1981).

A. Hadni et al., in Far Infrared Properties of Solids, S. S. Mitra, S. Nudelman, Eds. (Plenum, New York, 1970), pp. 535–560.
[CrossRef]

B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, New York, 1965).

R. J. Pressley, Ed., Handbook of Lasers (CRC Press, Cleveland, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Refractive index n of Nd:Y3Al5O12 in the 20–120-cm−1 wave number range.

Fig. 2
Fig. 2

Power absorption coefficient α cm−1 of Nd:Y3Al5O12 in the 20–120-cm−1 wave number range.

Fig. 3
Fig. 3

Percent transmission of a thin sample of Nd:Y3Al5O12 in the 50–300-cm−1 wave number range showing fundamental absorption peaks.

Fig. 4
Fig. 4

Ordinary and extraordinary refractive indices of LiYF4 in the 20–160-cm−1 wave number range.

Fig. 5
Fig. 5

Power absorption coefficient α cm−1 for the ordinary and extraordinary LiYF4 in the 20–160-cm−1 wave number range.

Fig. 6
Fig. 6

Percent transmission of the ordinary and extraordinary waves in a thin sample of LiYF4 in the 0–200-cm−1 wave number range.

Fig. 7
Fig. 7

Percent transmission of thin samples of Cs2NaDyCl6 and Rb2NaYF6 in the 20–400- and 10–200-cm−1 wave number ranges.

Fig. 8
Fig. 8

Partial energy level diagram of the Stark split levels of Nd3+:LiYF4 and Nd3+:Y3Al5O2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = m 2 d v .
R ( n - 1 n + 1 ) 2 ,
T ( 1 - R ) 2 exp ( - α d ) 1 - R 2 exp ( - 2 α d ) .
n 2 k + S 0 ν 0 2 ν 0 2 - ν 2 ,

Metrics