Abstract

Capacitance cells have been designed and constructed for measuring the low-frequency dielectric constant of nonmetallic samples such as optical materials. One equipment covers the 80–300-K temperature range and the other, the 300–500-K range. Data are reported for optical materials CaF2, KCl, ZnS, and MgF2 (measured parallel to c axis) and a reference material: Teflon sheet. Only Teflon has been measured in both temperature ranges. A special feature of the equipment is that the dielectric cell can easily be replaced by a cell adapted to measure the linear thermal expansion of appropriate samples through the same temperature ranges, and these measurements permit improved determinations of the temperature coefficient of the dielectric constant.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Driscoll, Ed., Handbook of Optics (McGraw-Hill, New York, 1978), p. 7–137.
  2. W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook, prepared by The Infrared Information and Analysis (IRIA) Center of the Environmental Research Institute of Michigan for the Office of Naval Research (U.S. GPO, Washington, D.C., 1978), pp. 7–20 and 7–21.
  3. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 9-108–9-113.
  4. J. S. Browder, S. S. Ballard, Appl. Opt. 8, 793 (1969).
    [Crossref] [PubMed]
  5. J. F. Ebersole, S. S. Ballard, J. S. Browder, Appl. Opt. 11, 844 (1972).
    [Crossref] [PubMed]
  6. J. C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1954), Vol. 1, p. 308.
  7. R. P. Lowndes, J. Phys. C 2, 1595 (1969).
    [Crossref]
  8. D. R. Bosomworth, Phys. Rev. 157, 709 (1967).
    [Crossref]
  9. K. V. Rao, A. Smakula, J. Appl. Phys. 37, 319 (1966).
    [Crossref]
  10. J. Fontanella, C. Andeen, D. Schuele, Phys. Rev. B 6, 582 (1972).
    [Crossref]
  11. D. Berlincourt, H. Jaffe, L. Schiozawa, Phys. Rev. 129, 1009 (1963).
    [Crossref]
  12. J. Fontanella, C. Andeen, D. Schuele, J. Appl. Phys. 45, 2852 (1974).
    [Crossref]
  13. P. Erlich, J. Res. Natl. Bur. Stand. 51, 185 (1953).
    [Crossref]
  14. Ref. 3, p. 5–131.
  15. R. K. Kirby, J. Res. Natl. Bur. Stand. 57, 91 (1956).
    [Crossref]
  16. H. A. Rigby, C. W. Bunn, Nature London 164, 583 (1949).
    [Crossref]
  17. F. A. Quinn, D. E. Roberts, R. N. Work, J. Appl. Phys. 22, 1085 (1951).
    [Crossref]
  18. T. Yasuda, Y. Araki, J. Appl. Polymer Sci. 5, 331 (1961).
    [Crossref]
  19. E. S. Clark, L. T. Muus, Z. Krist, Z. Krist. Kristallgeom. Kristallphys. Kristallchem. 117, 119 (1962).

1974 (1)

J. Fontanella, C. Andeen, D. Schuele, J. Appl. Phys. 45, 2852 (1974).
[Crossref]

1972 (2)

1969 (2)

1967 (1)

D. R. Bosomworth, Phys. Rev. 157, 709 (1967).
[Crossref]

1966 (1)

K. V. Rao, A. Smakula, J. Appl. Phys. 37, 319 (1966).
[Crossref]

1963 (1)

D. Berlincourt, H. Jaffe, L. Schiozawa, Phys. Rev. 129, 1009 (1963).
[Crossref]

1962 (1)

E. S. Clark, L. T. Muus, Z. Krist, Z. Krist. Kristallgeom. Kristallphys. Kristallchem. 117, 119 (1962).

1961 (1)

T. Yasuda, Y. Araki, J. Appl. Polymer Sci. 5, 331 (1961).
[Crossref]

1956 (1)

R. K. Kirby, J. Res. Natl. Bur. Stand. 57, 91 (1956).
[Crossref]

1953 (1)

P. Erlich, J. Res. Natl. Bur. Stand. 51, 185 (1953).
[Crossref]

1951 (1)

F. A. Quinn, D. E. Roberts, R. N. Work, J. Appl. Phys. 22, 1085 (1951).
[Crossref]

1949 (1)

H. A. Rigby, C. W. Bunn, Nature London 164, 583 (1949).
[Crossref]

Andeen, C.

J. Fontanella, C. Andeen, D. Schuele, J. Appl. Phys. 45, 2852 (1974).
[Crossref]

J. Fontanella, C. Andeen, D. Schuele, Phys. Rev. B 6, 582 (1972).
[Crossref]

Araki, Y.

T. Yasuda, Y. Araki, J. Appl. Polymer Sci. 5, 331 (1961).
[Crossref]

Ballard, S. S.

Berlincourt, D.

D. Berlincourt, H. Jaffe, L. Schiozawa, Phys. Rev. 129, 1009 (1963).
[Crossref]

Bosomworth, D. R.

D. R. Bosomworth, Phys. Rev. 157, 709 (1967).
[Crossref]

Browder, J. S.

Bunn, C. W.

H. A. Rigby, C. W. Bunn, Nature London 164, 583 (1949).
[Crossref]

Clark, E. S.

E. S. Clark, L. T. Muus, Z. Krist, Z. Krist. Kristallgeom. Kristallphys. Kristallchem. 117, 119 (1962).

Ebersole, J. F.

Erlich, P.

P. Erlich, J. Res. Natl. Bur. Stand. 51, 185 (1953).
[Crossref]

Fontanella, J.

J. Fontanella, C. Andeen, D. Schuele, J. Appl. Phys. 45, 2852 (1974).
[Crossref]

J. Fontanella, C. Andeen, D. Schuele, Phys. Rev. B 6, 582 (1972).
[Crossref]

Jaffe, H.

D. Berlincourt, H. Jaffe, L. Schiozawa, Phys. Rev. 129, 1009 (1963).
[Crossref]

Kirby, R. K.

R. K. Kirby, J. Res. Natl. Bur. Stand. 57, 91 (1956).
[Crossref]

Krist, Z.

E. S. Clark, L. T. Muus, Z. Krist, Z. Krist. Kristallgeom. Kristallphys. Kristallchem. 117, 119 (1962).

Lowndes, R. P.

R. P. Lowndes, J. Phys. C 2, 1595 (1969).
[Crossref]

Maxwell, J. C.

J. C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1954), Vol. 1, p. 308.

Muus, L. T.

E. S. Clark, L. T. Muus, Z. Krist, Z. Krist. Kristallgeom. Kristallphys. Kristallchem. 117, 119 (1962).

Quinn, F. A.

F. A. Quinn, D. E. Roberts, R. N. Work, J. Appl. Phys. 22, 1085 (1951).
[Crossref]

Rao, K. V.

K. V. Rao, A. Smakula, J. Appl. Phys. 37, 319 (1966).
[Crossref]

Rigby, H. A.

H. A. Rigby, C. W. Bunn, Nature London 164, 583 (1949).
[Crossref]

Roberts, D. E.

F. A. Quinn, D. E. Roberts, R. N. Work, J. Appl. Phys. 22, 1085 (1951).
[Crossref]

Schiozawa, L.

D. Berlincourt, H. Jaffe, L. Schiozawa, Phys. Rev. 129, 1009 (1963).
[Crossref]

Schuele, D.

J. Fontanella, C. Andeen, D. Schuele, J. Appl. Phys. 45, 2852 (1974).
[Crossref]

J. Fontanella, C. Andeen, D. Schuele, Phys. Rev. B 6, 582 (1972).
[Crossref]

Smakula, A.

K. V. Rao, A. Smakula, J. Appl. Phys. 37, 319 (1966).
[Crossref]

Work, R. N.

F. A. Quinn, D. E. Roberts, R. N. Work, J. Appl. Phys. 22, 1085 (1951).
[Crossref]

Yasuda, T.

T. Yasuda, Y. Araki, J. Appl. Polymer Sci. 5, 331 (1961).
[Crossref]

Appl. Opt. (2)

J. Appl. Phys. (3)

K. V. Rao, A. Smakula, J. Appl. Phys. 37, 319 (1966).
[Crossref]

J. Fontanella, C. Andeen, D. Schuele, J. Appl. Phys. 45, 2852 (1974).
[Crossref]

F. A. Quinn, D. E. Roberts, R. N. Work, J. Appl. Phys. 22, 1085 (1951).
[Crossref]

J. Appl. Polymer Sci. (1)

T. Yasuda, Y. Araki, J. Appl. Polymer Sci. 5, 331 (1961).
[Crossref]

J. Phys. C (1)

R. P. Lowndes, J. Phys. C 2, 1595 (1969).
[Crossref]

J. Res. Natl. Bur. Stand. (2)

P. Erlich, J. Res. Natl. Bur. Stand. 51, 185 (1953).
[Crossref]

R. K. Kirby, J. Res. Natl. Bur. Stand. 57, 91 (1956).
[Crossref]

Nature London (1)

H. A. Rigby, C. W. Bunn, Nature London 164, 583 (1949).
[Crossref]

Phys. Rev. (2)

D. Berlincourt, H. Jaffe, L. Schiozawa, Phys. Rev. 129, 1009 (1963).
[Crossref]

D. R. Bosomworth, Phys. Rev. 157, 709 (1967).
[Crossref]

Phys. Rev. B (1)

J. Fontanella, C. Andeen, D. Schuele, Phys. Rev. B 6, 582 (1972).
[Crossref]

Z. Krist. Kristallgeom. Kristallphys. Kristallchem. (1)

E. S. Clark, L. T. Muus, Z. Krist, Z. Krist. Kristallgeom. Kristallphys. Kristallchem. 117, 119 (1962).

Other (5)

Ref. 3, p. 5–131.

J. C. Maxwell, A Treatise on Electricity and Magnetism (Dover, New York, 1954), Vol. 1, p. 308.

W. G. Driscoll, Ed., Handbook of Optics (McGraw-Hill, New York, 1978), p. 7–137.

W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook, prepared by The Infrared Information and Analysis (IRIA) Center of the Environmental Research Institute of Michigan for the Office of Naval Research (U.S. GPO, Washington, D.C., 1978), pp. 7–20 and 7–21.

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1972), pp. 9-108–9-113.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dielectric cell. See text for identification of symbols.

Fig. 2
Fig. 2

Thermal expansion cell. See text for identification of symbols. Optimum dimensions of the cylindrical sample S are 12.7 mm (0.5-in.) length and 6.4 mm (0.25-in.) or larger diameter.

Fig. 3
Fig. 3

Dielectric constant vs temperature for several materials, measured at 10 kHz.

Fig. 4
Fig. 4

Dielectric constant of Teflon at 10 kHz, its temperature coefficient, and its coefficient of linear thermal expansion, measured through the first of its two room-temperature phase transitions.

Tables (1)

Tables Icon

Table I Low-frequency Dielectric Constants of Teflon and Four Optical Materials: Crystalline CaF2 and KCl; Polycrystalline ZnS (Irtran 2); Single-crystalline MgF2 (Measured Parallel to the c axis)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C = κ r π r 2 g [ 1 + ( ω / r ) ( 1 + ω / 2 r ) 1 + 0.22 ω / g ] ,
r = 0 C m g m ( 1 + X m ) C 0 g 0 ( 1 + X 0 ) ,
d d T ln r = d d T ln C m + α m - d d T ln C 0 - α 0 ,

Metrics