Abstract

A color facsimile system that prints out individual colors in separate traces does not require an achromatized lens. Focus corrections between individual single-color scan signals can maintain all colors in focus. Rearrangement of the video-signal color-scan sequence or high-speed incremental film transport may be employed instead of moving focus-correcting windows.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Jenness, Appl. Opt. 18, 2033 (1979).
    [Crossref] [PubMed]

1979 (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

CRT facsimile optical system.

Fig. 2
Fig. 2

Ray emerging from faceplate.

Fig. 3
Fig. 3

Filter-window assembly in front of film.

Fig. 4
Fig. 4

Focus-correcting filter windows overlaid on the CRT faceplate.

Fig. 5
Fig. 5

Color phosphors on back and focus-correcting windows on front of the faceplate.

Fig. 6
Fig. 6

Tilted CRT with prism.

Fig. 7
Fig. 7

Glass strips coated with red and green phosphors bonded to back of the CRT faceplate, with blue phosphor on the faceplate between their edges.

Fig. 8
Fig. 8

Phosphor-coated glass strips on back of the CRT faceplate.

Fig. 9
Fig. 9

Prefabricated phosphor-coated glass-strip subassemblies.

Fig. 10
Fig. 10

Elements of a system-design compromise.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

1 u + 1 v = 1 f .
m = v / u
a b / n
f = m u m + 1 .
F = f D = m u D ( m + 1 ) ,
D = m u F ( m + 1 ) .
tan α = D / 2 u = m 2 F ( m + 1 ) .
D / 2 v = D / 2 m u = tan α m = 1 2 F ( m + 1 ) .
p = - ( b - b / n ) = - n - 1 n b .
q = n - 1 n c .
w = h 2 tan α m ( c 0 + c b / n ) .
w y b y r 2 b b tan β = 2 b b n tan α = 2 tan α n ( b f + t b ) ,
e r = t r tan β t r tan α n ,
w r 2 t r tan β 2 t r tan α n ,
t r = b r - b f .
- d u u 2 = - d f f 2 ,
δ u = u 2 f 2 δ f ,
δ u = δ p = - n - 1 n δ b = u 2 f 2 δ f .
δ b = - n n - 1 u 2 f 2 δ f .
δ u = δ a = δ b / n = u 2 f 2 δ f .
δ b = n u 2 f 2 δ f .
- d v v 2 = - d f f 2 ,
δ v = v 2 f 2 δ f .
δ v = δ q = n - 1 n δ c = v 2 f 2 δ f ,
δ f = f 2 m 2 u 2 n - 1 n δ c .
δ b = - n n - 1 u 2 f 2 f 2 m 2 u 2 n - 1 n δ c = - δ c m 2 .
δ b = n u 2 f 2 f 2 m 2 u 2 n - 1 n δ c = n - 1 m 2 δ c .
tan α = 2 2 ( 2 ) ( 2 + 1 ) = 1 6
δ c = n n - 1 δ v = 1.5 1.5 - 1 ( 1.6 m ) = 4.8 mm .
h = 2 tan 9.46 ° 2 ( 15 mm + 6.35 mm 1.5 ) = 3.2 mm .
2 1.5 tan 9.46 º ( 12 mm + 1.2 mm ) = 2.9 mm .
δ b = b r - b b = 1.5 - 1 2 2 ( 4.8 mm ) = 0.6 mm .
e r = 0.6 mm 1.5 tan 9.46 º = 0.067 mm .

Metrics