Abstract

Linear zone plates with a minimum linewidth of 0.69 μm are fabricated by electron-beam writing and deep UV lithographic techniques. The focusing characteristics are examined for laser beams at 0.633 and 0.86 μm in wavelength. A focal length of 200 m, minimum spot size of 1.0 μm, and a numerical aperture of 0.42 are obtained at λ = 0.633 μm. Possible applications of the present technology to the fabrication of miniaturized focusing elements for opto-electronics are discussed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kodate, H. Takenaka, T. Kamiya, Opt. Quantum. Electron. 14, 85 (1982).
    [CrossRef]
  2. A. H. Firester, Appl. Opt. 12, 1698 (1973).
    [CrossRef] [PubMed]
  3. B. Fay, J. Trotel, A. Frichet, J. Vac. Sci. Technol. 16, 1954 (1979).
    [CrossRef]
  4. D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979).
    [CrossRef]
  5. W. S. C. Chang, P. R. Ashley, IEEE J. Quantum Electron. QE-16, 744 (1980).
    [CrossRef]
  6. F. Kalk, D. Glocker, J. Vac. Sci. Technol. 19, 170 (1981).
    [CrossRef]
  7. T. Suhara, K. Kobayashi, H. Nishihara, J. Koyama, Appl. Opt. 21, 1966 (1982).
    [CrossRef] [PubMed]
  8. C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
    [CrossRef]
  9. K. Kodate, Y. Tamura, Y. Okabe, T. Kamiya, to be submitted to Jpn. J. Appl. Phys.
  10. C. B. Burkhardt, J. Opt. Soc. Am. 56, 1502 (1966).
    [CrossRef]

1982

K. Kodate, H. Takenaka, T. Kamiya, Opt. Quantum. Electron. 14, 85 (1982).
[CrossRef]

T. Suhara, K. Kobayashi, H. Nishihara, J. Koyama, Appl. Opt. 21, 1966 (1982).
[CrossRef] [PubMed]

1981

C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
[CrossRef]

F. Kalk, D. Glocker, J. Vac. Sci. Technol. 19, 170 (1981).
[CrossRef]

1980

W. S. C. Chang, P. R. Ashley, IEEE J. Quantum Electron. QE-16, 744 (1980).
[CrossRef]

1979

B. Fay, J. Trotel, A. Frichet, J. Vac. Sci. Technol. 16, 1954 (1979).
[CrossRef]

D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979).
[CrossRef]

1973

1966

Ashley, P. R.

W. S. C. Chang, P. R. Ashley, IEEE J. Quantum Electron. QE-16, 744 (1980).
[CrossRef]

Burkhardt, C. B.

Ceglio, N. M.

D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979).
[CrossRef]

Chang, W. S. C.

W. S. C. Chang, P. R. Ashley, IEEE J. Quantum Electron. QE-16, 744 (1980).
[CrossRef]

Fay, B.

B. Fay, J. Trotel, A. Frichet, J. Vac. Sci. Technol. 16, 1954 (1979).
[CrossRef]

Firester, A. H.

Flanders, D. C.

D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979).
[CrossRef]

Frichet, A.

B. Fay, J. Trotel, A. Frichet, J. Vac. Sci. Technol. 16, 1954 (1979).
[CrossRef]

Glocker, D.

F. Kalk, D. Glocker, J. Vac. Sci. Technol. 19, 170 (1981).
[CrossRef]

Hasegawa, K.

C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
[CrossRef]

Kalk, F.

F. Kalk, D. Glocker, J. Vac. Sci. Technol. 19, 170 (1981).
[CrossRef]

Kamiya, T.

K. Kodate, H. Takenaka, T. Kamiya, Opt. Quantum. Electron. 14, 85 (1982).
[CrossRef]

K. Kodate, Y. Tamura, Y. Okabe, T. Kamiya, to be submitted to Jpn. J. Appl. Phys.

Kobayashi, K.

Kodate, K.

K. Kodate, H. Takenaka, T. Kamiya, Opt. Quantum. Electron. 14, 85 (1982).
[CrossRef]

K. Kodate, Y. Tamura, Y. Okabe, T. Kamiya, to be submitted to Jpn. J. Appl. Phys.

Kojima, C.

C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
[CrossRef]

Koyama, J.

Miyahara, K.

C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
[CrossRef]

Nishihara, H.

Okabe, Y.

K. Kodate, Y. Tamura, Y. Okabe, T. Kamiya, to be submitted to Jpn. J. Appl. Phys.

Ooki, H.

C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
[CrossRef]

Otobe, T.

C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
[CrossRef]

Shaver, D. C.

D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979).
[CrossRef]

Smith, H. I.

D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979).
[CrossRef]

Suhara, T.

Takenaka, H.

K. Kodate, H. Takenaka, T. Kamiya, Opt. Quantum. Electron. 14, 85 (1982).
[CrossRef]

Tamura, Y.

K. Kodate, Y. Tamura, Y. Okabe, T. Kamiya, to be submitted to Jpn. J. Appl. Phys.

Trotel, J.

B. Fay, J. Trotel, A. Frichet, J. Vac. Sci. Technol. 16, 1954 (1979).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

W. S. C. Chang, P. R. Ashley, IEEE J. Quantum Electron. QE-16, 744 (1980).
[CrossRef]

J. Opt. Soc. Am.

J. Vac. Sci. Technol.

F. Kalk, D. Glocker, J. Vac. Sci. Technol. 19, 170 (1981).
[CrossRef]

B. Fay, J. Trotel, A. Frichet, J. Vac. Sci. Technol. 16, 1954 (1979).
[CrossRef]

D. C. Shaver, D. C. Flanders, N. M. Ceglio, H. I. Smith, J. Vac. Sci. Technol. 16, 1626 (1979).
[CrossRef]

Jpn. J. Appl. Phys.

C. Kojima, K. Miyahara, K. Hasegawa, T. Otobe, H. Ooki, Jpn. J. Appl. Phys. 20, Suppl. 20-1, 199 (1981).
[CrossRef]

Opt. Quantum. Electron.

K. Kodate, H. Takenaka, T. Kamiya, Opt. Quantum. Electron. 14, 85 (1982).
[CrossRef]

Other

K. Kodate, Y. Tamura, Y. Okabe, T. Kamiya, to be submitted to Jpn. J. Appl. Phys.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Configuration of a Fresnel zone plate.

Fig. 2
Fig. 2

Fabrication process of amorphous silicon mask for deep UV lithography by electron-beam exposure.

Fig. 3
Fig. 3

Fabrication process of phase Fresnel zone plate using deep UV lithography: (A) configuration of deep UV exposure process; (B) typical processing conditions of deep UV resist.

Fig. 4
Fig. 4

Phase Fresnel zone plate observed by a SEM. The length of the reference bar is 39 μm.

Fig. 5
Fig. 5

Cross section of photoresist Fresnel zone plate observed by a SEM. Exposure energy: 200 mJ/cm2. Development time: 2 min. Half of the total width (200 μm) is shown.

Fig. 6
Fig. 6

Near-field pattern at the focal point of zone plate: 2W = 1.0 μm at λ = 0.633 μm.

Fig. 7
Fig. 7

Measurement of focusing characteristics of a linear Fresnel zone plate at λ = 0.86 μm: LD, laser diode; F1,F2,F3, lenses; ZP, tested zone plate with the substrate at light source side; C, video camera; TV, video monitor; XY, XY recorder.

Fig. 8
Fig. 8

Focusing characteristics of a linear zone plate for an incident laser beam at λ = 0.86 μm is shown (2W0 = 0.65 μm) by real curve.

Fig. 9
Fig. 9

Magnified views of near-field pattern near the focal point (z = 0).

Fig. 10
Fig. 10

Example of microoptic devices using zone plate structures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r n 2 = n f λ + n 2 ( λ 2 / 4 ) ,

Metrics