Abstract

An experimental system is described for measuring the total hemispherical and spectrally resolved directional downward infrared sky radiation and complementary weather data in Kuwait. The accuracy of the measurement system is discussed and its use for evaluating the potential of the Kuwait sky as a heat sink for passive radiative cooling applications is presented.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. Granqvist, A. Hjortzberg, J. Appl. Phys. 52, 4205 (1981).
    [CrossRef]
  2. S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
    [CrossRef]
  3. P. Berdahl, M. Martin, in Proceedings, Third National Passive Solar Conference, San Jose, H. Miller, M. Riordan, D. Richards, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1979), p. 443.
  4. T. S. Erikssbn, C. G. Granqvist, Appl. Opt. 21, 4381 (1982).
    [CrossRef]
  5. K. Y. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969), pp. 107–109.
  6. P. Berdahl, R. Fromberg, Sol. Energy 29, 299 (1982).
    [CrossRef]
  7. P. Berdahl, M. Martin, in Proceedings, Second National Passive Solar Conference, Vol. 2, D. Prowler, I. Duncan, B. Bennett, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1978), p. 684.
  8. M. Al-Hashash, F. I. Khalaf, Rate of Deposition and Grain Size Distribution of Dust Fallout in Kuwait (Kuwait Institute for Scientific Research, 1980), pp. 179–181.

1982 (2)

T. S. Erikssbn, C. G. Granqvist, Appl. Opt. 21, 4381 (1982).
[CrossRef]

P. Berdahl, R. Fromberg, Sol. Energy 29, 299 (1982).
[CrossRef]

1981 (1)

C. G. Granqvist, A. Hjortzberg, J. Appl. Phys. 52, 4205 (1981).
[CrossRef]

1975 (1)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

Al-Hashash, M.

M. Al-Hashash, F. I. Khalaf, Rate of Deposition and Grain Size Distribution of Dust Fallout in Kuwait (Kuwait Institute for Scientific Research, 1980), pp. 179–181.

Berdahl, P.

P. Berdahl, R. Fromberg, Sol. Energy 29, 299 (1982).
[CrossRef]

P. Berdahl, M. Martin, in Proceedings, Second National Passive Solar Conference, Vol. 2, D. Prowler, I. Duncan, B. Bennett, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1978), p. 684.

P. Berdahl, M. Martin, in Proceedings, Third National Passive Solar Conference, San Jose, H. Miller, M. Riordan, D. Richards, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1979), p. 443.

Catalanotti, S.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

Cuomo, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

Erikssbn, T. S.

Fromberg, R.

P. Berdahl, R. Fromberg, Sol. Energy 29, 299 (1982).
[CrossRef]

Granqvist, C. G.

T. S. Erikssbn, C. G. Granqvist, Appl. Opt. 21, 4381 (1982).
[CrossRef]

C. G. Granqvist, A. Hjortzberg, J. Appl. Phys. 52, 4205 (1981).
[CrossRef]

Hjortzberg, A.

C. G. Granqvist, A. Hjortzberg, J. Appl. Phys. 52, 4205 (1981).
[CrossRef]

Khalaf, F. I.

M. Al-Hashash, F. I. Khalaf, Rate of Deposition and Grain Size Distribution of Dust Fallout in Kuwait (Kuwait Institute for Scientific Research, 1980), pp. 179–181.

Kondratyev, K. Y.

K. Y. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969), pp. 107–109.

Martin, M.

P. Berdahl, M. Martin, in Proceedings, Second National Passive Solar Conference, Vol. 2, D. Prowler, I. Duncan, B. Bennett, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1978), p. 684.

P. Berdahl, M. Martin, in Proceedings, Third National Passive Solar Conference, San Jose, H. Miller, M. Riordan, D. Richards, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1979), p. 443.

Piro, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

Ruggi, D.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

Silvestrini, V.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

Troise, G.

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

C. G. Granqvist, A. Hjortzberg, J. Appl. Phys. 52, 4205 (1981).
[CrossRef]

Sol. Energy (2)

S. Catalanotti, V. Cuomo, G. Piro, D. Ruggi, V. Silvestrini, G. Troise, Sol. Energy 17, 83 (1975).
[CrossRef]

P. Berdahl, R. Fromberg, Sol. Energy 29, 299 (1982).
[CrossRef]

Other (4)

P. Berdahl, M. Martin, in Proceedings, Second National Passive Solar Conference, Vol. 2, D. Prowler, I. Duncan, B. Bennett, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1978), p. 684.

M. Al-Hashash, F. I. Khalaf, Rate of Deposition and Grain Size Distribution of Dust Fallout in Kuwait (Kuwait Institute for Scientific Research, 1980), pp. 179–181.

P. Berdahl, M. Martin, in Proceedings, Third National Passive Solar Conference, San Jose, H. Miller, M. Riordan, D. Richards, Eds. (American Section, International Solar Energy Society, Newark, N.J., 1979), p. 443.

K. Y. Kondratyev, Radiation in the Atmosphere (Academic, New York, 1969), pp. 107–109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Downward infrared sky radiation as a function of wavelength. The solid curve represents typically measured radiation under clear weather conditions and the dotted curve a spectrum of a blackbody at ambient temperature. AW, atmospheric window; ordinate, sky radiance (W m−2μm−1 sr−1); abscissa, wavelength (μm).

Fig. 2
Fig. 2

Schematic representation of the experimental system for measuring infrared sky radiation and complementary weather data: DAS—data acquisition system, FM—filter motor, MM—mirror motor, LC—logic circuit, X—to control mirror and filter positions, HLI—high-level inputs, LLI—low-level inputs, CI—current inputs, AF—active filter, OR—output of radiometer, Dig. Dis—digital display, T—timer, SR—spectral radiometer, PG—pyrgeometer, DI—dust indicator, HI—humidity indicator, BB—blackbody temperature, M—mirror temperature, Amb.—ambient temperature, RD—rain detector, I—RS 232C interface, HP—Hewlett Packard calculator.

Fig. 3
Fig. 3

Total hemispherical radiation in the 4–100-μm wavelength band as a function of time of day for 21 July 1982. The dotted curve represents data measured by the pyrgeometer. The solid curve was calculated from spectral radiometer measurements within the 8–14-μm band and by assuming the atmosphere to be a perfect black-body at ambient temperature outside this band. Ordinate, total hemispherical radiation (W m−2); abscissa, time of day (hours).

Fig. 4
Fig. 4

Plot of measured pyrgeometer data vs corresponding calculated spectral radiometer data (dotted and solid curves, respectively, in Fig. 3). The line of best fit through the data points is also shown. The second parallel line is an exact 1:1 correlation between the two sets of data. Ordinate, pyrgeometer (W m−2); abscissa, radiometer (W m−2).

Fig. 5
Fig. 5

Ambient temperature as a function of time of day for 21 July 1982. Ordinate, ambient temperature (°C); abscissa, time of day (hours).

Fig. 6
Fig. 6

Absolute humidity (solid curve AH) and calculated band hemispherical emissivity (dotted curve EBH) as a function of time of day for 21 July 1982. The band hemispherical emissivities were calculated from pyrgeometer measurements. Ordinate, absolute humidity (kg m−3 dry air × 1000), band hemispherical emissivity (×10); abscissa, time of day (hours).

Fig. 7
Fig. 7

Infrared radiative power exchange with the sky calculated from pyrgeometer and ambient temperature measurements for 21 July 1982. Ordinate, infrared radiative power exchange (W m−2); abscissa, time of day (hours).

Fig. 8
Fig. 8

Absolute humidity (dotted curve) relative dust concentration in the atmosphere (dashed curve) and calculated band hemispherical emissivities (solid curve) plotted as a function of time of day for 21 July 1982. The hemispherical band emissivities were calculated from pyrgeometer and ambient temperature measurements. Ordinate, absolute humidity (kg m−3 dry air × 104), band hemispherical emissivity (×100), relative counts sec−1 × 60; abscissa, time of day (hours).

Fig. 9
Fig. 9

Plot of the difference in ambient and equivalent sky temperatures as a function of time of day for 12–13 May 1982. Equivalent sky temperature was calculated from pyrgeometer measurements. Ordinate, temperature difference (TambientTsky) K; abscissa, time of day (hours).

Tables (1)

Tables Icon

Table I Typical Estimates of the Range of Errors Introduced by Electronic System Noise Made During the Calibration Procedure; the Function P λ * * ( T B B ) is Defined in the Text

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V = C 1 0 τ f [ ( 1 - ɛ c ) P ( λ , T 50 ° C ) + ( ɛ c - ɛ m ) P ( λ , T m ) - ( 1 - ɛ m ) i s ( λ , θ ) ] d λ + V 0 ,
( V - V 0 ) λ = a λ P λ * * ( T B B ) + b λ P λ * * ( T m ) + C ,

Metrics