Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Braat, Appl. Opt., 22, 2196 (1983).
    [CrossRef] [PubMed]
  2. G. J. Ammon, C. W. Reno, RCA Eng. 36 (May/June1982).
  3. J. D. Gaskill, Linear Systems, Fourirer Transforms, and Optics (Wiley, New York, 1978).
  4. J. W. Sherman, “Aperture Antenna Analysis,” in Radar Handbook, M. I. Skolnik, Ed. (McGraw-Hill, New York, 1970).

1983 (1)

1982 (1)

G. J. Ammon, C. W. Reno, RCA Eng. 36 (May/June1982).

Ammon, G. J.

G. J. Ammon, C. W. Reno, RCA Eng. 36 (May/June1982).

Braat, J.

Gaskill, J. D.

J. D. Gaskill, Linear Systems, Fourirer Transforms, and Optics (Wiley, New York, 1978).

Reno, C. W.

G. J. Ammon, C. W. Reno, RCA Eng. 36 (May/June1982).

Sherman, J. W.

J. W. Sherman, “Aperture Antenna Analysis,” in Radar Handbook, M. I. Skolnik, Ed. (McGraw-Hill, New York, 1970).

Appl. Opt. (1)

RCA Eng. 36 (1)

G. J. Ammon, C. W. Reno, RCA Eng. 36 (May/June1982).

Other (2)

J. D. Gaskill, Linear Systems, Fourirer Transforms, and Optics (Wiley, New York, 1978).

J. W. Sherman, “Aperture Antenna Analysis,” in Radar Handbook, M. I. Skolnik, Ed. (McGraw-Hill, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d = 2.44 λ D · f = 2.44 λ F ,
I ( r ) = 4 I 0 ( π D 2 4 λ f ) 2 J 1 2 ( π D r λ f ) ( π D r λ f ) 2 .
r = 0.4 μ m 0.917 μ m ( 1.22 λ F ) = 0.53 λ F .
A ( x , y ) = A 0 - v ( x , y ) exp [ - j 2 π ( α x λ f + β y λ f ) ] d α d β ,
I ( x , y ) = A ( x , y ) 2 .
v ( r ) = 1 D 2 4 - r 2 ,
I ( r ) = I 0 ( D 2 λ f ) 2 sin 2 ( π D r λ f ) ( π D r λ f ) 2 .
I ( x , y ) = I 0 ( D 2 λ f ) 2 sin 2 ( π D x λ f ) sin 2 ( π D y λ f ) ( π D x λ f ) 2 ( π D y λ f ) 2 .
v ( x , y ) = 1 ( D 2 4 - x 2 ) 1 / 2 ( D 2 4 - y 2 ) 1 / 2 ,
I ( x , y ) = I 0 J 0 2 ( π D x λ f ) J 0 2 ( π D y λ f ) .
v ( x , y ) = [ δ ( x - D / 2 ) + δ ( x + D / 2 ) ] [ δ ( y - D / 2 ) + δ ( y + D / 2 ) ] .
I ( x , y ) = I 0 cos 2 ( π D x λ f ) cos 2 ( π D y λ f ) .

Metrics