Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bryson, Y. C. Ho, Applied Optimal Control (Blaisdell, Waltham, Mass.1969).
  2. B. Anderson, J. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, N.J., 1979).
  3. D. Casasent, J. Jackson, C. P. Neuman, Appl. Opt. 22, 115 (1983).
    [CrossRef] [PubMed]
  4. H. J. Caulfield et al., Opt. Commun. 40, 86 (Dec.1981).
    [CrossRef]
  5. D. Casasent, Appl. Opt. 21, 1859 (1982).
    [CrossRef] [PubMed]
  6. J. W. Goodman, L. M. Woody, Appl. Opt. 16, 2611 (1977).
    [CrossRef] [PubMed]

1983 (1)

1982 (1)

1981 (1)

H. J. Caulfield et al., Opt. Commun. 40, 86 (Dec.1981).
[CrossRef]

1977 (1)

Anderson, B.

B. Anderson, J. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, N.J., 1979).

Bryson, A.

A. Bryson, Y. C. Ho, Applied Optimal Control (Blaisdell, Waltham, Mass.1969).

Casasent, D.

Caulfield, H. J.

H. J. Caulfield et al., Opt. Commun. 40, 86 (Dec.1981).
[CrossRef]

Goodman, J. W.

Ho, Y. C.

A. Bryson, Y. C. Ho, Applied Optimal Control (Blaisdell, Waltham, Mass.1969).

Jackson, J.

Moore, J.

B. Anderson, J. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, N.J., 1979).

Neuman, C. P.

Woody, L. M.

Appl. Opt. (3)

Opt. Commun. (1)

H. J. Caulfield et al., Opt. Commun. 40, 86 (Dec.1981).
[CrossRef]

Other (2)

A. Bryson, Y. C. Ho, Applied Optimal Control (Blaisdell, Waltham, Mass.1969).

B. Anderson, J. Moore, Optimal Filtering (Prentice-Hall, Englewood Cliffs, N.J., 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Schematic diagram of an optical systolic processor for Kalman filter state estimation.

Tables (1)

Tables Icon

Table I Discrete-Time (k) Kalman Filter Equations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

x ¯ k + 1 = ( Φ k - Φ k K k H k ) x ¯ k + Φ k K k z k + Γ k w ¯ k ,
x ¯ k + 1 = A k x ¯ k + B k z k + Γ k w ¯ k .

Metrics