Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Füchtbauer, G. Joos, O. Dinkelacker, Ann Phys. 71, 204 (1923).
    [Crossref]
  2. R. G. Breene, The Shift and Shape of Spectral Lines (Pergamon, London, 1961).
  3. G. Blendstrup, D. Bershader, P. W. Langhoff, AIAA J. 16, 1106 (1978).
    [Crossref]
  4. L. K. P. Chan, Thesis, Stanford U. (1983).
  5. A. E. S. Green, P. J. Wyatt, Atomic and Space Physics (Addison-Wesley, Reading, Mass., 1965), pp. 343–349.
  6. W. E. Lamb, Fine Structure of the Hydrogen Atom, Nobel Lecture, Physics, 1942–1962 (Elsevier, Amsterdam, 1964), pp. 286–295.
  7. A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer. 19, 505 (1978).
    [Crossref]

1978 (2)

G. Blendstrup, D. Bershader, P. W. Langhoff, AIAA J. 16, 1106 (1978).
[Crossref]

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer. 19, 505 (1978).
[Crossref]

1923 (1)

C. Füchtbauer, G. Joos, O. Dinkelacker, Ann Phys. 71, 204 (1923).
[Crossref]

Armstrong, B. H.

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer. 19, 505 (1978).
[Crossref]

Bershader, D.

G. Blendstrup, D. Bershader, P. W. Langhoff, AIAA J. 16, 1106 (1978).
[Crossref]

Blendstrup, G.

G. Blendstrup, D. Bershader, P. W. Langhoff, AIAA J. 16, 1106 (1978).
[Crossref]

Breene, R. G.

R. G. Breene, The Shift and Shape of Spectral Lines (Pergamon, London, 1961).

Chan, L. K. P.

L. K. P. Chan, Thesis, Stanford U. (1983).

Dinkelacker, O.

C. Füchtbauer, G. Joos, O. Dinkelacker, Ann Phys. 71, 204 (1923).
[Crossref]

Füchtbauer, C.

C. Füchtbauer, G. Joos, O. Dinkelacker, Ann Phys. 71, 204 (1923).
[Crossref]

Green, A. E. S.

A. E. S. Green, P. J. Wyatt, Atomic and Space Physics (Addison-Wesley, Reading, Mass., 1965), pp. 343–349.

Hui, A. K.

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer. 19, 505 (1978).
[Crossref]

Joos, G.

C. Füchtbauer, G. Joos, O. Dinkelacker, Ann Phys. 71, 204 (1923).
[Crossref]

Lamb, W. E.

W. E. Lamb, Fine Structure of the Hydrogen Atom, Nobel Lecture, Physics, 1942–1962 (Elsevier, Amsterdam, 1964), pp. 286–295.

Langhoff, P. W.

G. Blendstrup, D. Bershader, P. W. Langhoff, AIAA J. 16, 1106 (1978).
[Crossref]

Wray, A. A.

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer. 19, 505 (1978).
[Crossref]

Wyatt, P. J.

A. E. S. Green, P. J. Wyatt, Atomic and Space Physics (Addison-Wesley, Reading, Mass., 1965), pp. 343–349.

AIAA J. (1)

G. Blendstrup, D. Bershader, P. W. Langhoff, AIAA J. 16, 1106 (1978).
[Crossref]

Ann Phys. (1)

C. Füchtbauer, G. Joos, O. Dinkelacker, Ann Phys. 71, 204 (1923).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer. (1)

A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer. 19, 505 (1978).
[Crossref]

Other (4)

R. G. Breene, The Shift and Shape of Spectral Lines (Pergamon, London, 1961).

L. K. P. Chan, Thesis, Stanford U. (1983).

A. E. S. Green, P. J. Wyatt, Atomic and Space Physics (Addison-Wesley, Reading, Mass., 1965), pp. 343–349.

W. E. Lamb, Fine Structure of the Hydrogen Atom, Nobel Lecture, Physics, 1942–1962 (Elsevier, Amsterdam, 1964), pp. 286–295.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Comparison of refractive indices of sodium near the D2 line at T = 760 K, N = 0.3635 × 1023 atoms/m3, calculated from the exact equation (1) (solid line), first approximation (— + —) and second approximation (- - -).

Fig. 2
Fig. 2

Comparison of extinction indices of sodium near the D2 line at T = 760 K, N = 0.3635 × 1023 atoms/m3, calculated from the exact equation (1) (—), first approximation (— + —), second approximation (- - -).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

u = 2 ( ln 2 ) 1 / 2 ( ν - ν r ) γ D , y = 2 ( ln 2 ) 1 / 2 ( ν - ν r ) γ D , a = γ L γ D ( ln 2 ) 1 / 2 ,
d N = N π 1 / 2 exp ( - y 2 ) · d y ,
n ˜ 2 - 1 n ˜ 2 + 2 = 2 3 ( n 0 - 1 ) - i r C r W ¯ ( Z r ) ,
C r = π 1 / 2 N e 2 f r a r 12 π 2 m 0 γ L ν a , n ˜ = n - i κ , Z r = u r + i a r , W ¯ ( Z r ) = W R ( Z r ) - i W I ( Z r ) , = conjugate of complex error function .
n ˜ 2 - 1 n ˜ 2 + 2 2 3 ( n - 1 - i κ ) ( first approximation ) , n ˜ 2 - 1 n ˜ 2 + 2 1 3 ( n ˜ 2 - 1 ) ( second approximation ) .
ν a = ( ν r + ν ) / 2 , γ a = γ n ( 1 + δ ) 3 ν a 2 / ν r 2 ,

Metrics