Abstract

A generalized method for designing a high resolution acoustooptic filter with variable passband characteristics is described and experimentally verified in crystalline quartz. The optical passband of this filter configuration is made insensitive to acoustic divergence by canceling the wave vector mismatch caused by acoustic divergence by the similar effect introduced by the anisotropy of the acoustic velocity within the acceptance angle. About 0.4-nm half-power bandwidth with an external half-angular aperture of ~3° was obtained at 488 nm in a quartz filter. By changing the effective interaction length from 47 to 6 mm the passband was varied approximately from 0.4 to 3.5 nm. The possibilities of finding suitable filter orientations in Tl3AsSe3 and TeO2 are also discussed.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bates, D. Halliwell, D. Findlay, “Astronomical Spectrophotometry with an Acoustooptic Filter Photometer,” Appl. Opt. 23, 257 (1984).
    [CrossRef] [PubMed]
  2. I. C. Chang, P. Katzka, “Acousto-Optic Tunable Filters for High Resolution Spectral Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 268, 167 (1981).
  3. J. Jacob, I. C. Chang, “Development of an AOTF Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 202, 40 (1979).
  4. D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic Tuning of a Dye Laser Using the Acousto-Optic Filter,” Appl. Phys. Lett. 19, 269 (1971).
    [CrossRef]
  5. I. C. Chang, “Laser Detection Utilizing Tunable Acoustooptic Filters,” IEEE J. Quantum Electron. QE-14, 108 (1978).
    [CrossRef]
  6. J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Programmable Acoustooptic Filters—Characteristics and Potential Applications in Optical Computing,” in Proceedings, IEEE 1978 International Optical Computing Conference55 (1978).
  7. J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).
  8. I. C. Chang, “Tunable Acousto-Optic Filter Utilizing Acoustic Beam Walkoff in Crystal Quartz,” Appl. Phys. Lett. 25, 323 (1974).
    [CrossRef]
  9. I. C. Chang, P. Katzka, J. Jacob, S. Estrin, “Programmable Acousto-Optic Filter,” in Proceedings, IEEE 1979 Ultrasonic Symposium40 (1979).
    [CrossRef]
  10. I. C. Chang, “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
    [CrossRef]
  11. I. C. Chang, P. Katzka, “Enhancement of Acousto-Optic Filter Resolution Using Birefringence Dispersion in CdS,” Opt. Lett. 7, 535 (1982).
    [CrossRef] [PubMed]
  12. S. E. Harris, R. W. Wallace, “Acousto-Optic Tunable Filter,” J. Opt. Soc. Am. 59, 744 (1969).
    [CrossRef]
  13. S. E. Harris, S. T. K. Nieh, D. K. Winslow, “Electronically Tunable Acousto-Optic Filter,” Appl. Phys. Lett. 15, 325 (1969).
    [CrossRef]
  14. I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Opt. Eng. 16, 455 (1977).
    [CrossRef]
  15. J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 Noncollinear Acoustooptic Filter Operation at 10 μm,” Appl. Phys. Lett. 34, 1 (1979).
    [CrossRef]
  16. J. A. Kusters, D. A. Wilson, D. L. Hammond, “Optimum Crystal Orientation for Acoustically Tuned Optical Filters,” J. Opt. Soc. Am. 64, 434 (1974).
    [CrossRef]
  17. T. Yano, A. Watanabe, “Acoustooptic TeO2 Tunable Filter Using Far-Off-Axis Anisotropic Bragg Diffraction,” Appl. Opt. 15, 2250 (1976).
    [CrossRef] [PubMed]
  18. I. C. Chang, U.S. Patent4,342,502 (1982).
  19. Y. Ohmachi, N. Uchida, “Acoustic and Acousto-Optical Properties of TeO2 Single Crystal,” Rev. Electr. Commun. Lab. 20, 529 (1972).
  20. M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-Optic Properties of Some Chalcogenide Crystals,” J. Appl. Phys. 45, 5145 (1974).
    [CrossRef]
  21. J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tunable Acoustooptic Filters and their Applications to Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 82, 106 (1976).
  22. Y. Fujii, H. Hayashi, “Acousto-Optic Tunable Filter with Controllable Passband,” J. Appl. Phys. 46, 5046 (1975).
    [CrossRef]
  23. I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).
  24. I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
    [CrossRef]
  25. M. Gottlieb, Z. Kun, “Temporal Response of High-Resolution Acoustooptic Tunable Filters,” Appl. Opt. 22, 2104 (1983).
    [CrossRef] [PubMed]
  26. D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1963), p. 6–24.
  27. T. Radhakrishnan, “The Dispersion, Birefringence and Optical Activity of Quartz,” Proc Indian Acad. Sci. Sect. A 29, 260 (1947).

1984 (1)

1983 (1)

1982 (1)

1981 (2)

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

I. C. Chang, P. Katzka, “Acousto-Optic Tunable Filters for High Resolution Spectral Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 268, 167 (1981).

1979 (2)

J. Jacob, I. C. Chang, “Development of an AOTF Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 202, 40 (1979).

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 Noncollinear Acoustooptic Filter Operation at 10 μm,” Appl. Phys. Lett. 34, 1 (1979).
[CrossRef]

1978 (1)

I. C. Chang, “Laser Detection Utilizing Tunable Acoustooptic Filters,” IEEE J. Quantum Electron. QE-14, 108 (1978).
[CrossRef]

1977 (1)

I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Opt. Eng. 16, 455 (1977).
[CrossRef]

1976 (3)

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tunable Acoustooptic Filters and their Applications to Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 82, 106 (1976).

T. Yano, A. Watanabe, “Acoustooptic TeO2 Tunable Filter Using Far-Off-Axis Anisotropic Bragg Diffraction,” Appl. Opt. 15, 2250 (1976).
[CrossRef] [PubMed]

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).

1975 (2)

I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
[CrossRef]

Y. Fujii, H. Hayashi, “Acousto-Optic Tunable Filter with Controllable Passband,” J. Appl. Phys. 46, 5046 (1975).
[CrossRef]

1974 (4)

I. C. Chang, “Tunable Acousto-Optic Filter Utilizing Acoustic Beam Walkoff in Crystal Quartz,” Appl. Phys. Lett. 25, 323 (1974).
[CrossRef]

I. C. Chang, “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-Optic Properties of Some Chalcogenide Crystals,” J. Appl. Phys. 45, 5145 (1974).
[CrossRef]

J. A. Kusters, D. A. Wilson, D. L. Hammond, “Optimum Crystal Orientation for Acoustically Tuned Optical Filters,” J. Opt. Soc. Am. 64, 434 (1974).
[CrossRef]

1972 (1)

Y. Ohmachi, N. Uchida, “Acoustic and Acousto-Optical Properties of TeO2 Single Crystal,” Rev. Electr. Commun. Lab. 20, 529 (1972).

1971 (1)

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic Tuning of a Dye Laser Using the Acousto-Optic Filter,” Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

1969 (2)

S. E. Harris, S. T. K. Nieh, D. K. Winslow, “Electronically Tunable Acousto-Optic Filter,” Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

S. E. Harris, R. W. Wallace, “Acousto-Optic Tunable Filter,” J. Opt. Soc. Am. 59, 744 (1969).
[CrossRef]

1947 (1)

T. Radhakrishnan, “The Dispersion, Birefringence and Optical Activity of Quartz,” Proc Indian Acad. Sci. Sect. A 29, 260 (1947).

Bates, B.

Chang, I. C.

I. C. Chang, P. Katzka, “Enhancement of Acousto-Optic Filter Resolution Using Birefringence Dispersion in CdS,” Opt. Lett. 7, 535 (1982).
[CrossRef] [PubMed]

I. C. Chang, P. Katzka, “Acousto-Optic Tunable Filters for High Resolution Spectral Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 268, 167 (1981).

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

J. Jacob, I. C. Chang, “Development of an AOTF Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 202, 40 (1979).

I. C. Chang, “Laser Detection Utilizing Tunable Acoustooptic Filters,” IEEE J. Quantum Electron. QE-14, 108 (1978).
[CrossRef]

I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Opt. Eng. 16, 455 (1977).
[CrossRef]

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).

I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
[CrossRef]

I. C. Chang, “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

I. C. Chang, “Tunable Acousto-Optic Filter Utilizing Acoustic Beam Walkoff in Crystal Quartz,” Appl. Phys. Lett. 25, 323 (1974).
[CrossRef]

I. C. Chang, P. Katzka, J. Jacob, S. Estrin, “Programmable Acousto-Optic Filter,” in Proceedings, IEEE 1979 Ultrasonic Symposium40 (1979).
[CrossRef]

I. C. Chang, U.S. Patent4,342,502 (1982).

Conroy, J. J.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 Noncollinear Acoustooptic Filter Operation at 10 μm,” Appl. Phys. Lett. 34, 1 (1979).
[CrossRef]

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tunable Acoustooptic Filters and their Applications to Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 82, 106 (1976).

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Programmable Acoustooptic Filters—Characteristics and Potential Applications in Optical Computing,” in Proceedings, IEEE 1978 International Optical Computing Conference55 (1978).

Estrin, S.

I. C. Chang, P. Katzka, J. Jacob, S. Estrin, “Programmable Acousto-Optic Filter,” in Proceedings, IEEE 1979 Ultrasonic Symposium40 (1979).
[CrossRef]

Feichtner, J. D.

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 Noncollinear Acoustooptic Filter Operation at 10 μm,” Appl. Phys. Lett. 34, 1 (1979).
[CrossRef]

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tunable Acoustooptic Filters and their Applications to Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 82, 106 (1976).

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-Optic Properties of Some Chalcogenide Crystals,” J. Appl. Phys. 45, 5145 (1974).
[CrossRef]

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Programmable Acoustooptic Filters—Characteristics and Potential Applications in Optical Computing,” in Proceedings, IEEE 1978 International Optical Computing Conference55 (1978).

Findlay, D.

Fujii, Y.

Y. Fujii, H. Hayashi, “Acousto-Optic Tunable Filter with Controllable Passband,” J. Appl. Phys. 46, 5046 (1975).
[CrossRef]

Gottlieb, M.

M. Gottlieb, Z. Kun, “Temporal Response of High-Resolution Acoustooptic Tunable Filters,” Appl. Opt. 22, 2104 (1983).
[CrossRef] [PubMed]

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 Noncollinear Acoustooptic Filter Operation at 10 μm,” Appl. Phys. Lett. 34, 1 (1979).
[CrossRef]

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tunable Acoustooptic Filters and their Applications to Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 82, 106 (1976).

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-Optic Properties of Some Chalcogenide Crystals,” J. Appl. Phys. 45, 5145 (1974).
[CrossRef]

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Programmable Acoustooptic Filters—Characteristics and Potential Applications in Optical Computing,” in Proceedings, IEEE 1978 International Optical Computing Conference55 (1978).

Halliwell, D.

Hammond, D. L.

Hansch, T. W.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic Tuning of a Dye Laser Using the Acousto-Optic Filter,” Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Harris, S. E.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic Tuning of a Dye Laser Using the Acousto-Optic Filter,” Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

S. E. Harris, S. T. K. Nieh, D. K. Winslow, “Electronically Tunable Acousto-Optic Filter,” Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

S. E. Harris, R. W. Wallace, “Acousto-Optic Tunable Filter,” J. Opt. Soc. Am. 59, 744 (1969).
[CrossRef]

Hayashi, H.

Y. Fujii, H. Hayashi, “Acousto-Optic Tunable Filter with Controllable Passband,” J. Appl. Phys. 46, 5046 (1975).
[CrossRef]

Houston, J. B.

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

Isaacs, T. J.

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-Optic Properties of Some Chalcogenide Crystals,” J. Appl. Phys. 45, 5145 (1974).
[CrossRef]

Jacob, J.

J. Jacob, I. C. Chang, “Development of an AOTF Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 202, 40 (1979).

I. C. Chang, P. Katzka, J. Jacob, S. Estrin, “Programmable Acousto-Optic Filter,” in Proceedings, IEEE 1979 Ultrasonic Symposium40 (1979).
[CrossRef]

Katzka, P.

I. C. Chang, P. Katzka, “Enhancement of Acousto-Optic Filter Resolution Using Birefringence Dispersion in CdS,” Opt. Lett. 7, 535 (1982).
[CrossRef] [PubMed]

I. C. Chang, P. Katzka, “Acousto-Optic Tunable Filters for High Resolution Spectral Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 268, 167 (1981).

I. C. Chang, P. Katzka, J. Jacob, S. Estrin, “Programmable Acousto-Optic Filter,” in Proceedings, IEEE 1979 Ultrasonic Symposium40 (1979).
[CrossRef]

Kun, Z.

Kusters, J. A.

Nieh, S. T. K.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic Tuning of a Dye Laser Using the Acousto-Optic Filter,” Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

S. E. Harris, S. T. K. Nieh, D. K. Winslow, “Electronically Tunable Acousto-Optic Filter,” Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Ohmachi, Y.

Y. Ohmachi, N. Uchida, “Acoustic and Acousto-Optical Properties of TeO2 Single Crystal,” Rev. Electr. Commun. Lab. 20, 529 (1972).

Radhakrishnan, T.

T. Radhakrishnan, “The Dispersion, Birefringence and Optical Activity of Quartz,” Proc Indian Acad. Sci. Sect. A 29, 260 (1947).

Roland, G. W.

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-Optic Properties of Some Chalcogenide Crystals,” J. Appl. Phys. 45, 5145 (1974).
[CrossRef]

Smithline, L. M.

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

Taylor, D. J.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic Tuning of a Dye Laser Using the Acousto-Optic Filter,” Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

Tracy, J.

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

Uchida, N.

Y. Ohmachi, N. Uchida, “Acoustic and Acousto-Optical Properties of TeO2 Single Crystal,” Rev. Electr. Commun. Lab. 20, 529 (1972).

Wallace, R. W.

Watanabe, A.

Wilson, D. A.

Winslow, D. K.

S. E. Harris, S. T. K. Nieh, D. K. Winslow, “Electronically Tunable Acousto-Optic Filter,” Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Wolga, G. J.

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

Yano, T.

Yao, S. K.

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

Appl. Opt. (3)

Appl. Phys. Lett. (5)

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tl3AsSe3 Noncollinear Acoustooptic Filter Operation at 10 μm,” Appl. Phys. Lett. 34, 1 (1979).
[CrossRef]

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic Tuning of a Dye Laser Using the Acousto-Optic Filter,” Appl. Phys. Lett. 19, 269 (1971).
[CrossRef]

I. C. Chang, “Tunable Acousto-Optic Filter Utilizing Acoustic Beam Walkoff in Crystal Quartz,” Appl. Phys. Lett. 25, 323 (1974).
[CrossRef]

I. C. Chang, “Noncollinear Acousto-Optic Filter with Large Angular Aperture,” Appl. Phys. Lett. 25, 370 (1974).
[CrossRef]

S. E. Harris, S. T. K. Nieh, D. K. Winslow, “Electronically Tunable Acousto-Optic Filter,” Appl. Phys. Lett. 15, 325 (1969).
[CrossRef]

Electron. Lett. (1)

I. C. Chang, “Analysis of the Noncollinear Acousto-Optic Filter,” Electron. Lett. 11, 617 (1975).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. C. Chang, “Laser Detection Utilizing Tunable Acoustooptic Filters,” IEEE J. Quantum Electron. QE-14, 108 (1978).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “Acoustooptic Devices and Applications,” IEEE Trans. Sonics Ultrason. SU-23, 1 (1976).

J. Appl. Phys. (2)

Y. Fujii, H. Hayashi, “Acousto-Optic Tunable Filter with Controllable Passband,” J. Appl. Phys. 46, 5046 (1975).
[CrossRef]

M. Gottlieb, T. J. Isaacs, J. D. Feichtner, G. W. Roland, “Acousto-Optic Properties of Some Chalcogenide Crystals,” J. Appl. Phys. 45, 5145 (1974).
[CrossRef]

J. Opt. Soc. Am. (2)

Opt. Eng. (2)

J. B. Houston, M. Gottlieb, S. K. Yao, I. C. Chang, J. Tracy, L. M. Smithline, G. J. Wolga, “The Potential for Acousto-Optics in Instrumentation: an Overview for the 1980s,” Opt. Eng. 20, 712 (1981).

I. C. Chang, “Tunable Acousto-Optic Filters: An Overview,” Opt. Eng. 16, 455 (1977).
[CrossRef]

Opt. Lett. (1)

Proc Indian Acad. Sci. Sect. A (1)

T. Radhakrishnan, “The Dispersion, Birefringence and Optical Activity of Quartz,” Proc Indian Acad. Sci. Sect. A 29, 260 (1947).

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Tunable Acoustooptic Filters and their Applications to Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 82, 106 (1976).

I. C. Chang, P. Katzka, “Acousto-Optic Tunable Filters for High Resolution Spectral Analysis,” Proc. Soc. Photo-Opt. Instrum. Eng. 268, 167 (1981).

J. Jacob, I. C. Chang, “Development of an AOTF Spectrometer,” Proc. Soc. Photo-Opt. Instrum. Eng. 202, 40 (1979).

Rev. Electr. Commun. Lab. (1)

Y. Ohmachi, N. Uchida, “Acoustic and Acousto-Optical Properties of TeO2 Single Crystal,” Rev. Electr. Commun. Lab. 20, 529 (1972).

Other (4)

J. D. Feichtner, M. Gottlieb, J. J. Conroy, “Programmable Acoustooptic Filters—Characteristics and Potential Applications in Optical Computing,” in Proceedings, IEEE 1978 International Optical Computing Conference55 (1978).

I. C. Chang, U.S. Patent4,342,502 (1982).

I. C. Chang, P. Katzka, J. Jacob, S. Estrin, “Programmable Acousto-Optic Filter,” in Proceedings, IEEE 1979 Ultrasonic Symposium40 (1979).
[CrossRef]

D. E. Gray, Ed., American Institute of Physics Handbook (McGraw-Hill, New York, 1963), p. 6–24.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Wave vector diagram for a noncollinear acoustooptic interaction.

Fig. 2
Fig. 2

Variation of acoustic polar angle with incident optical polar angle.

Fig. 3
Fig. 3

Plot of required optical uniformity as a function of maximum interaction length at λ = 160 and 488 nm.

Fig. 4
Fig. 4

(a) Schematic diagram of the noncollinear filter, θi = 78.7° and θi = 100.35°. (b) Filter configuration showing optimum ratio of active volume to filter volume.

Fig. 5
Fig. 5

Block diagram of the experimental setup.

Fig. 6
Fig. 6

Oscillograms of diffracted optical pulses for (a) τp < τf, (b) τp = τf, and (c) τp > τf with the computed pulse shape.

Fig. 7
Fig. 7

Measured filter transmission vs applied acoustic frequency with the computed response curve.

Fig. 8
Fig. 8

Variation of optical bandwidth with effective interaction length.

Fig. 9
Fig. 9

Block diagram of the experimental setup used for the measurement of angular aperture.

Fig. 10
Fig. 10

Variation of optical bandwidth with optical divergence.

Fig. 11
Fig. 11

Birefringence dispersion of crystalline quartz.

Tables (1)

Tables Icon

Table I Summary of Standard, Maximum, and Minimum Deviations Obtained Using the Measured Values of Birefringence in Different Formulas

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

K d = K i - K a .
λ = B ( λ ) V ( θ a ) sin 2 θ i f a cos ( θ i - θ a ) ,
B ( λ ) = a λ - λ c + b .
I 1 I 0 = ( π η L int ) 2 sinc 2 ( X ) ,
X = L int [ η 2 + ( Δ K / 2 π ) 2 ] 1 / 2 ,
η = M e 1 / 2 P d 1 / 2 / 2 λ ,
I peak = I o sin 2 ( π η L int ) .
tan θ i tan ( θ a - θ i ) = 2.
Δ λ = 1.8 π λ 2 A L int sin 2 θ i ,
Δ θ = [ λ L int B ( λ ) 2 cot 2 θ i - 1 ] 1 / 2 ,
Δ λ = [ λ L int B ( λ ) ( cos 2 θ i + 1 ) ] 1 / 2 ,
A = 2 π [ B ( λ ) - λ λ B ( λ ) ] .
Δ λ θ a 0 = 0.9 λ 2 sin ( θ i - θ a ) L B ( λ ) D ( λ ) sin 2 θ i ,
D ( λ ) = 1 + B ( λ ) - b B ( λ ) · λ λ - λ c ,
Δ λ θ a = Δ λ θ a 0 [ tan ( θ g - θ a ) tan ( θ i - θ a ) - 1 ] ,
tan θ a = C 14 - C 44 tan θ g C 14 tan θ g - C 66 .
tan θ g = tan θ i .
m 3 - ( C 66 + C 44 C 14 ) m 2 + 3 m - 2 C 66 C 14 = 0 ,
Δ λ B = λ · Δ B / B .
L max = 0.9 λ sin 2 θ i ( B - λ B / λ ) · B Δ B .
d λ s = ( d λ / d t ) · τ ,
τ = L int / V g
B ( λ ) = a ( λ - λ c ) + b

Metrics