Abstract

A study of the pulsed optogalvanic effect in a Sr/Ne hollow cathode tube for Penning ionization spectroscopy in this system is described. In the case of strontium this ionization is a multichannel process due to the quasi-resonance between the four excited 3s states of neon with the high density of Rydberg states close to a Sr+ ionization continuum. A detailed investigation of the signal as a function of tube current and its spatial dependence as well as a comparison with Ca/Ne Penning rate is also reported.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Bridges, “Characteristics of an Opto-galvanic Effect in Cesium and Other Gas Discharge Plasmas,” J. Opt. Soc. Am. 68, 352 (1978).
    [Crossref]
  2. R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
    [Crossref]
  3. R. Shuker, A. Ben-Amar, G. Erez, “Enhanced Optogalvanic Effect in Pulsed Optical Double Resonance Spectroscopy,” Opt. Commun. 39, 51 (1981).
    [Crossref]
  4. A. Ben Amar, R. Shuker, G. Erez, “Penning Ionization Spectroscopy Using the Optogalvanic Effect,” Appl. Phys. Lett. 38, 763 (1981); R. Shuker, A. Ben-Amar, G. Erez, “Optogalvanic Spectroscopy of Quasi-resonant Penning Ionization,” J. Appl. Phys. 54, 5685 (1983).
    [Crossref]
  5. G. Erez, S. Lavi, E. Miron, “A Simplified Theory of the Optogalvanic Effect,” IEEE J. Quantum Electron. QE-15, 1328 (1979).
    [Crossref]
  6. K. C. Smyth, B. L. Bentz, C. G. Bruhn, W. W. Harrison, “The Role of Penning Ionization of the Minor Species in a Neon Hollow Cathode Discharge,” J. Am. Chem. Soc. 101, 797 (1979).
    [Crossref]
  7. E. F. Zalewski, R. A. Keller, R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem. Phys. 70, 1015 (1979).
    [Crossref]

1981 (2)

R. Shuker, A. Ben-Amar, G. Erez, “Enhanced Optogalvanic Effect in Pulsed Optical Double Resonance Spectroscopy,” Opt. Commun. 39, 51 (1981).
[Crossref]

A. Ben Amar, R. Shuker, G. Erez, “Penning Ionization Spectroscopy Using the Optogalvanic Effect,” Appl. Phys. Lett. 38, 763 (1981); R. Shuker, A. Ben-Amar, G. Erez, “Optogalvanic Spectroscopy of Quasi-resonant Penning Ionization,” J. Appl. Phys. 54, 5685 (1983).
[Crossref]

1979 (3)

G. Erez, S. Lavi, E. Miron, “A Simplified Theory of the Optogalvanic Effect,” IEEE J. Quantum Electron. QE-15, 1328 (1979).
[Crossref]

K. C. Smyth, B. L. Bentz, C. G. Bruhn, W. W. Harrison, “The Role of Penning Ionization of the Minor Species in a Neon Hollow Cathode Discharge,” J. Am. Chem. Soc. 101, 797 (1979).
[Crossref]

E. F. Zalewski, R. A. Keller, R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem. Phys. 70, 1015 (1979).
[Crossref]

1978 (1)

1976 (1)

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Ben Amar, A.

A. Ben Amar, R. Shuker, G. Erez, “Penning Ionization Spectroscopy Using the Optogalvanic Effect,” Appl. Phys. Lett. 38, 763 (1981); R. Shuker, A. Ben-Amar, G. Erez, “Optogalvanic Spectroscopy of Quasi-resonant Penning Ionization,” J. Appl. Phys. 54, 5685 (1983).
[Crossref]

Ben-Amar, A.

R. Shuker, A. Ben-Amar, G. Erez, “Enhanced Optogalvanic Effect in Pulsed Optical Double Resonance Spectroscopy,” Opt. Commun. 39, 51 (1981).
[Crossref]

Bentz, B. L.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, W. W. Harrison, “The Role of Penning Ionization of the Minor Species in a Neon Hollow Cathode Discharge,” J. Am. Chem. Soc. 101, 797 (1979).
[Crossref]

Bridges, W. B.

Bruhn, C. G.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, W. W. Harrison, “The Role of Penning Ionization of the Minor Species in a Neon Hollow Cathode Discharge,” J. Am. Chem. Soc. 101, 797 (1979).
[Crossref]

Engleman, R.

E. F. Zalewski, R. A. Keller, R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem. Phys. 70, 1015 (1979).
[Crossref]

Erez, G.

A. Ben Amar, R. Shuker, G. Erez, “Penning Ionization Spectroscopy Using the Optogalvanic Effect,” Appl. Phys. Lett. 38, 763 (1981); R. Shuker, A. Ben-Amar, G. Erez, “Optogalvanic Spectroscopy of Quasi-resonant Penning Ionization,” J. Appl. Phys. 54, 5685 (1983).
[Crossref]

R. Shuker, A. Ben-Amar, G. Erez, “Enhanced Optogalvanic Effect in Pulsed Optical Double Resonance Spectroscopy,” Opt. Commun. 39, 51 (1981).
[Crossref]

G. Erez, S. Lavi, E. Miron, “A Simplified Theory of the Optogalvanic Effect,” IEEE J. Quantum Electron. QE-15, 1328 (1979).
[Crossref]

Green, R. B.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Harrison, W. W.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, W. W. Harrison, “The Role of Penning Ionization of the Minor Species in a Neon Hollow Cathode Discharge,” J. Am. Chem. Soc. 101, 797 (1979).
[Crossref]

Keller, R. A.

E. F. Zalewski, R. A. Keller, R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem. Phys. 70, 1015 (1979).
[Crossref]

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Lavi, S.

G. Erez, S. Lavi, E. Miron, “A Simplified Theory of the Optogalvanic Effect,” IEEE J. Quantum Electron. QE-15, 1328 (1979).
[Crossref]

Luther, G. G.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Miron, E.

G. Erez, S. Lavi, E. Miron, “A Simplified Theory of the Optogalvanic Effect,” IEEE J. Quantum Electron. QE-15, 1328 (1979).
[Crossref]

Schenck, P. K.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Shuker, R.

A. Ben Amar, R. Shuker, G. Erez, “Penning Ionization Spectroscopy Using the Optogalvanic Effect,” Appl. Phys. Lett. 38, 763 (1981); R. Shuker, A. Ben-Amar, G. Erez, “Optogalvanic Spectroscopy of Quasi-resonant Penning Ionization,” J. Appl. Phys. 54, 5685 (1983).
[Crossref]

R. Shuker, A. Ben-Amar, G. Erez, “Enhanced Optogalvanic Effect in Pulsed Optical Double Resonance Spectroscopy,” Opt. Commun. 39, 51 (1981).
[Crossref]

Smyth, K. C.

K. C. Smyth, B. L. Bentz, C. G. Bruhn, W. W. Harrison, “The Role of Penning Ionization of the Minor Species in a Neon Hollow Cathode Discharge,” J. Am. Chem. Soc. 101, 797 (1979).
[Crossref]

Travis, J. C.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

Zalewski, E. F.

E. F. Zalewski, R. A. Keller, R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem. Phys. 70, 1015 (1979).
[Crossref]

Appl. Phys. Lett. (2)

A. Ben Amar, R. Shuker, G. Erez, “Penning Ionization Spectroscopy Using the Optogalvanic Effect,” Appl. Phys. Lett. 38, 763 (1981); R. Shuker, A. Ben-Amar, G. Erez, “Optogalvanic Spectroscopy of Quasi-resonant Penning Ionization,” J. Appl. Phys. 54, 5685 (1983).
[Crossref]

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, “Galvanic Detection of Optical Absorption in a Gas Discharge,” Appl. Phys. Lett. 29, 727 (1976).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Erez, S. Lavi, E. Miron, “A Simplified Theory of the Optogalvanic Effect,” IEEE J. Quantum Electron. QE-15, 1328 (1979).
[Crossref]

J. Am. Chem. Soc. (1)

K. C. Smyth, B. L. Bentz, C. G. Bruhn, W. W. Harrison, “The Role of Penning Ionization of the Minor Species in a Neon Hollow Cathode Discharge,” J. Am. Chem. Soc. 101, 797 (1979).
[Crossref]

J. Chem. Phys. (1)

E. F. Zalewski, R. A. Keller, R. Engleman, “Laser Induced Impedance Changes in a Neon Hollow Cathode Discharge. A Mechanistic Study,” J. Chem. Phys. 70, 1015 (1979).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

R. Shuker, A. Ben-Amar, G. Erez, “Enhanced Optogalvanic Effect in Pulsed Optical Double Resonance Spectroscopy,” Opt. Commun. 39, 51 (1981).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Partial energy diagram for the relevant Sr, Sr+, and Ne atomic levels related to Penning ionization of Sr by neon. The dashed line occurs at the Rydberg level of n ≳ 40.

Fig. 2
Fig. 2

Penning ionization part of the optogalvanic signals in a Sr/Ne hollow cathode tube at different discharge currents. The inset shows a complete optogalvanic signal in a Sr/Ne tube at 5 mA. The laser wavelength is 594.4 nm.

Fig. 3
Fig. 3

Optogalvanic signals in a Sr/Ne hollow cathode tube at different points: A, central point; B, an inner point near the hole boundary; C,D, points on the cathode rim; C is very close to the hole boundary marked by the dashed circle.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W ( R ) = 1 B + * , A , e V ( R ) A * , B 2 ρ ( E ) f ,

Metrics