Abstract

Germania glass was prepared from high purity GeO2 powder. Refractive-index dispersion was used to calculate material dispersion and to provide a model for representing the dispersion of GeO2–SiO2 glasses. The wavelength of zero material dispersion is found to be in agreement with theoretical calculations. Modal propagation is modeled for a GeO2 core–silica clad fiber. Results support compositional dependence of profile dispersion in GeO2–SiO2 fibers.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Olshansky, G. W. Scherer, Optical Communications Conference, Amsterdam, Sept. 1979, Abstract 1.103.
  2. K. Nassau, “The Material Dispersion Zero in Infrared Optical Waveguide Materials,” Bell Syst. Tech. J. 60, 237 (1981).
  3. H. Osanai et al., “Effect of Dopants on Transmission Loss of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 549 (1976).
    [CrossRef]
  4. S. H. Wemple, “Material Dispersion in Optical Fibers,” Appl. Opt. 18, 31 (1979).
    [CrossRef] [PubMed]
  5. D. L. Wood, J. W. Fleming, “Computerized Refractive Index Measurements for Bulk Materials at UV, Visible, and IR Wavelengths,” Rev. Sci. Instrum. 53, 1 (1982).
    [CrossRef]
  6. W. A. Burnette, C. S. Roberts, AT&T Bell Laboratories, Murray Hill, NJ., private communication.
  7. L. M. Dennis, A. W. Laubengayer, “Germanium XVII. Fused Germanium Dioxide and Some Germanium Glasses,” J. Phys. Chem. 30, 1510 (1926).
    [CrossRef]
  8. V. A. Kolesova, E. S. Sher, “Two-Component Glasses of the System GeO2–SiO2,” Inorg. Mat. 9, 1018 (1973).
  9. Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship Between Composition, Density, and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
    [CrossRef]
  10. C. R. Kurkjian, R. W. Douglas, “The Viscosity of Glasses in the System Na2O–GeO2,” Phys. Chem. Glasses 1, 19 (1960).
  11. G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber Waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
    [CrossRef]
  12. S. H. Wemple et al., “Binary SiO2–B2O3 Glass System: Refractive Index Behavior and Energy Gap Considerations,” J. Appl. Phys. 44, 5432 (1973).
    [CrossRef]
  13. C. R. Hammond, “Silica-Based Binary Glass Systems: Wavelength Dispersive Properties and Composition in Optical Fibers,” Opt. Quantum Electron. 10, 163 (1978).
    [CrossRef]
  14. S. Kobayashi, S. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, (1977), p. 309.
  15. R. D. Maurer, P. C. Schultz, U.S. Patent3,844,550 (1975).
  16. J. W. Fleming, E. A. Sigety, “Properties of Glasses in the GeO2–B2O3–SiO2 System,” Abstract, Am. Ceram. Soc. Bull. 53, 664 (1974).
  17. J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. Am. Ceram. Soc. 59, 503 (1976).
    [CrossRef]
  18. J. W. Fleming, J. R. Simpson, previously unpublished.
  19. I. H. Malitson, “Refractive Index of Fused Silica,” J. Opt. Soc. Am. 55, 1205 (1965).
    [CrossRef]
  20. R. Olshansky, D. B. Keck, “Pulse Broadening in Graded-Index Optical Fibers,” Appl. Opt. 15, 483 (1976).
    [CrossRef] [PubMed]
  21. J. A. Arnaud, J. W. Fleming, “Pulse Broadening in Multimode Optical Fibers With Large An/n: Numerical Results,” Electron. Lett. 12, 7 (1976).
    [CrossRef]
  22. H. M. Presby, I. P. Kaminow, “Binary Silica Optical Fibers: Refractive Index and Profile Dispersion Measurements,” Appl. Opt. 15, 3029 (1976).
    [CrossRef] [PubMed]
  23. F. M. E. Sladen, D. N. Payne, M. J. Adams, “Definitive Profile-Dispersion Data for Germania-Doped Silica Fibers Over an Extended Wavelength Range,” Electron. Lett. 15, 469 (1979).
    [CrossRef]
  24. M. G. Kendall, A. Stuart, Advanced Theory in Statistics V. Distribution Theory (Hafner, New York, 1961).
  25. J. W. Fleming, “Material Dispersion in Lightguide Glasses,” Electron. Lett. 14, 326 (1978).
    [CrossRef]
  26. G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).
  27. N. Shibata, S. Shibata, T. Edahiro, “Refractive Index Dispersion of Lightguide Glasses at High Temperature,” Elect. Lett. 17, 310 (1981).
    [CrossRef]
  28. W. A. Sproson, K. B. Lyons, J. W. Fleming, “Nondestructive Concentration Profiling of Fiber Optic Preforms by Analysis of Raman Spectra,” J. Non-Cryst. Solids 45, 69 (1981).
    [CrossRef]
  29. D. N. Payne, A. H. Hartog, “Determination of the Wavelength of Zero Material Dispersion in Optical Fibers by Pulse-Delay Measurements,” Electron. Lett. 13, 627 (1977).
    [CrossRef]
  30. L. G. Cohen, C. Lin, “Phase Delay Measurements in the Zero Material Dispersion Wavelength Region for Optical Fibers,” Appl. Opt. 16, 3136 (1977).
    [CrossRef] [PubMed]

1982 (1)

D. L. Wood, J. W. Fleming, “Computerized Refractive Index Measurements for Bulk Materials at UV, Visible, and IR Wavelengths,” Rev. Sci. Instrum. 53, 1 (1982).
[CrossRef]

1981 (4)

K. Nassau, “The Material Dispersion Zero in Infrared Optical Waveguide Materials,” Bell Syst. Tech. J. 60, 237 (1981).

G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).

N. Shibata, S. Shibata, T. Edahiro, “Refractive Index Dispersion of Lightguide Glasses at High Temperature,” Elect. Lett. 17, 310 (1981).
[CrossRef]

W. A. Sproson, K. B. Lyons, J. W. Fleming, “Nondestructive Concentration Profiling of Fiber Optic Preforms by Analysis of Raman Spectra,” J. Non-Cryst. Solids 45, 69 (1981).
[CrossRef]

1980 (1)

G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber Waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

1979 (2)

F. M. E. Sladen, D. N. Payne, M. J. Adams, “Definitive Profile-Dispersion Data for Germania-Doped Silica Fibers Over an Extended Wavelength Range,” Electron. Lett. 15, 469 (1979).
[CrossRef]

S. H. Wemple, “Material Dispersion in Optical Fibers,” Appl. Opt. 18, 31 (1979).
[CrossRef] [PubMed]

1978 (3)

J. W. Fleming, “Material Dispersion in Lightguide Glasses,” Electron. Lett. 14, 326 (1978).
[CrossRef]

C. R. Hammond, “Silica-Based Binary Glass Systems: Wavelength Dispersive Properties and Composition in Optical Fibers,” Opt. Quantum Electron. 10, 163 (1978).
[CrossRef]

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship Between Composition, Density, and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

1977 (2)

D. N. Payne, A. H. Hartog, “Determination of the Wavelength of Zero Material Dispersion in Optical Fibers by Pulse-Delay Measurements,” Electron. Lett. 13, 627 (1977).
[CrossRef]

L. G. Cohen, C. Lin, “Phase Delay Measurements in the Zero Material Dispersion Wavelength Region for Optical Fibers,” Appl. Opt. 16, 3136 (1977).
[CrossRef] [PubMed]

1976 (5)

R. Olshansky, D. B. Keck, “Pulse Broadening in Graded-Index Optical Fibers,” Appl. Opt. 15, 483 (1976).
[CrossRef] [PubMed]

H. M. Presby, I. P. Kaminow, “Binary Silica Optical Fibers: Refractive Index and Profile Dispersion Measurements,” Appl. Opt. 15, 3029 (1976).
[CrossRef] [PubMed]

H. Osanai et al., “Effect of Dopants on Transmission Loss of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 549 (1976).
[CrossRef]

J. A. Arnaud, J. W. Fleming, “Pulse Broadening in Multimode Optical Fibers With Large An/n: Numerical Results,” Electron. Lett. 12, 7 (1976).
[CrossRef]

J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. Am. Ceram. Soc. 59, 503 (1976).
[CrossRef]

1974 (1)

J. W. Fleming, E. A. Sigety, “Properties of Glasses in the GeO2–B2O3–SiO2 System,” Abstract, Am. Ceram. Soc. Bull. 53, 664 (1974).

1973 (2)

S. H. Wemple et al., “Binary SiO2–B2O3 Glass System: Refractive Index Behavior and Energy Gap Considerations,” J. Appl. Phys. 44, 5432 (1973).
[CrossRef]

V. A. Kolesova, E. S. Sher, “Two-Component Glasses of the System GeO2–SiO2,” Inorg. Mat. 9, 1018 (1973).

1965 (1)

1960 (1)

C. R. Kurkjian, R. W. Douglas, “The Viscosity of Glasses in the System Na2O–GeO2,” Phys. Chem. Glasses 1, 19 (1960).

1926 (1)

L. M. Dennis, A. W. Laubengayer, “Germanium XVII. Fused Germanium Dioxide and Some Germanium Glasses,” J. Phys. Chem. 30, 1510 (1926).
[CrossRef]

Adams, M. J.

F. M. E. Sladen, D. N. Payne, M. J. Adams, “Definitive Profile-Dispersion Data for Germania-Doped Silica Fibers Over an Extended Wavelength Range,” Electron. Lett. 15, 469 (1979).
[CrossRef]

Arnaud, J. A.

J. A. Arnaud, J. W. Fleming, “Pulse Broadening in Multimode Optical Fibers With Large An/n: Numerical Results,” Electron. Lett. 12, 7 (1976).
[CrossRef]

Burnette, W. A.

W. A. Burnette, C. S. Roberts, AT&T Bell Laboratories, Murray Hill, NJ., private communication.

Carneval, A.

G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).

Cohen, L. G.

Dennis, L. M.

L. M. Dennis, A. W. Laubengayer, “Germanium XVII. Fused Germanium Dioxide and Some Germanium Glasses,” J. Phys. Chem. 30, 1510 (1926).
[CrossRef]

Devyatykh, G. G.

G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber Waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

Douglas, R. W.

C. R. Kurkjian, R. W. Douglas, “The Viscosity of Glasses in the System Na2O–GeO2,” Phys. Chem. Glasses 1, 19 (1960).

Edahiro, T.

N. Shibata, S. Shibata, T. Edahiro, “Refractive Index Dispersion of Lightguide Glasses at High Temperature,” Elect. Lett. 17, 310 (1981).
[CrossRef]

Fleming, J. W.

D. L. Wood, J. W. Fleming, “Computerized Refractive Index Measurements for Bulk Materials at UV, Visible, and IR Wavelengths,” Rev. Sci. Instrum. 53, 1 (1982).
[CrossRef]

G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).

W. A. Sproson, K. B. Lyons, J. W. Fleming, “Nondestructive Concentration Profiling of Fiber Optic Preforms by Analysis of Raman Spectra,” J. Non-Cryst. Solids 45, 69 (1981).
[CrossRef]

J. W. Fleming, “Material Dispersion in Lightguide Glasses,” Electron. Lett. 14, 326 (1978).
[CrossRef]

J. A. Arnaud, J. W. Fleming, “Pulse Broadening in Multimode Optical Fibers With Large An/n: Numerical Results,” Electron. Lett. 12, 7 (1976).
[CrossRef]

J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. Am. Ceram. Soc. 59, 503 (1976).
[CrossRef]

J. W. Fleming, E. A. Sigety, “Properties of Glasses in the GeO2–B2O3–SiO2 System,” Abstract, Am. Ceram. Soc. Bull. 53, 664 (1974).

J. W. Fleming, J. R. Simpson, previously unpublished.

Hammond, C. R.

C. R. Hammond, “Silica-Based Binary Glass Systems: Wavelength Dispersive Properties and Composition in Optical Fibers,” Opt. Quantum Electron. 10, 163 (1978).
[CrossRef]

Hartog, A. H.

D. N. Payne, A. H. Hartog, “Determination of the Wavelength of Zero Material Dispersion in Optical Fibers by Pulse-Delay Measurements,” Electron. Lett. 13, 627 (1977).
[CrossRef]

Huang, Y. Y.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship Between Composition, Density, and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Izawa, T.

S. Kobayashi, S. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, (1977), p. 309.

Kaminow, I. P.

Keck, D. B.

Kendall, M. G.

M. G. Kendall, A. Stuart, Advanced Theory in Statistics V. Distribution Theory (Hafner, New York, 1961).

Kobayashi, S.

S. Kobayashi, S. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, (1977), p. 309.

Kolesova, V. A.

V. A. Kolesova, E. S. Sher, “Two-Component Glasses of the System GeO2–SiO2,” Inorg. Mat. 9, 1018 (1973).

Kurkjian, C. R.

C. R. Kurkjian, R. W. Douglas, “The Viscosity of Glasses in the System Na2O–GeO2,” Phys. Chem. Glasses 1, 19 (1960).

Laubengayer, A. W.

L. M. Dennis, A. W. Laubengayer, “Germanium XVII. Fused Germanium Dioxide and Some Germanium Glasses,” J. Phys. Chem. 30, 1510 (1926).
[CrossRef]

Lin, C.

Lyons, K. B.

W. A. Sproson, K. B. Lyons, J. W. Fleming, “Nondestructive Concentration Profiling of Fiber Optic Preforms by Analysis of Raman Spectra,” J. Non-Cryst. Solids 45, 69 (1981).
[CrossRef]

Malitson, I. H.

Maurer, R. D.

R. D. Maurer, P. C. Schultz, U.S. Patent3,844,550 (1975).

Nassau, K.

K. Nassau, “The Material Dispersion Zero in Infrared Optical Waveguide Materials,” Bell Syst. Tech. J. 60, 237 (1981).

Olshansky, R.

R. Olshansky, D. B. Keck, “Pulse Broadening in Graded-Index Optical Fibers,” Appl. Opt. 15, 483 (1976).
[CrossRef] [PubMed]

R. Olshansky, G. W. Scherer, Optical Communications Conference, Amsterdam, Sept. 1979, Abstract 1.103.

Osanai, H.

H. Osanai et al., “Effect of Dopants on Transmission Loss of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 549 (1976).
[CrossRef]

Paek, U. C.

G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).

Payne, D. N.

F. M. E. Sladen, D. N. Payne, M. J. Adams, “Definitive Profile-Dispersion Data for Germania-Doped Silica Fibers Over an Extended Wavelength Range,” Electron. Lett. 15, 469 (1979).
[CrossRef]

D. N. Payne, A. H. Hartog, “Determination of the Wavelength of Zero Material Dispersion in Optical Fibers by Pulse-Delay Measurements,” Electron. Lett. 13, 627 (1977).
[CrossRef]

Peterson, G. E.

G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).

Presby, H. M.

Roberts, C. S.

W. A. Burnette, C. S. Roberts, AT&T Bell Laboratories, Murray Hill, NJ., private communication.

Sarkar, A.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship Between Composition, Density, and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

Scherer, G. W.

R. Olshansky, G. W. Scherer, Optical Communications Conference, Amsterdam, Sept. 1979, Abstract 1.103.

Schultz, P. C.

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship Between Composition, Density, and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

R. D. Maurer, P. C. Schultz, U.S. Patent3,844,550 (1975).

Sher, E. S.

V. A. Kolesova, E. S. Sher, “Two-Component Glasses of the System GeO2–SiO2,” Inorg. Mat. 9, 1018 (1973).

Shibata, N.

N. Shibata, S. Shibata, T. Edahiro, “Refractive Index Dispersion of Lightguide Glasses at High Temperature,” Elect. Lett. 17, 310 (1981).
[CrossRef]

Shibata, S.

N. Shibata, S. Shibata, T. Edahiro, “Refractive Index Dispersion of Lightguide Glasses at High Temperature,” Elect. Lett. 17, 310 (1981).
[CrossRef]

S. Kobayashi, S. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, (1977), p. 309.

Sigety, E. A.

J. W. Fleming, E. A. Sigety, “Properties of Glasses in the GeO2–B2O3–SiO2 System,” Abstract, Am. Ceram. Soc. Bull. 53, 664 (1974).

Simpson, J. R.

J. W. Fleming, J. R. Simpson, previously unpublished.

Sladen, F. M. E.

F. M. E. Sladen, D. N. Payne, M. J. Adams, “Definitive Profile-Dispersion Data for Germania-Doped Silica Fibers Over an Extended Wavelength Range,” Electron. Lett. 15, 469 (1979).
[CrossRef]

Sproson, W. A.

W. A. Sproson, K. B. Lyons, J. W. Fleming, “Nondestructive Concentration Profiling of Fiber Optic Preforms by Analysis of Raman Spectra,” J. Non-Cryst. Solids 45, 69 (1981).
[CrossRef]

Stuart, A.

M. G. Kendall, A. Stuart, Advanced Theory in Statistics V. Distribution Theory (Hafner, New York, 1961).

Wemple, S. H.

S. H. Wemple, “Material Dispersion in Optical Fibers,” Appl. Opt. 18, 31 (1979).
[CrossRef] [PubMed]

S. H. Wemple et al., “Binary SiO2–B2O3 Glass System: Refractive Index Behavior and Energy Gap Considerations,” J. Appl. Phys. 44, 5432 (1973).
[CrossRef]

Wood, D. L.

D. L. Wood, J. W. Fleming, “Computerized Refractive Index Measurements for Bulk Materials at UV, Visible, and IR Wavelengths,” Rev. Sci. Instrum. 53, 1 (1982).
[CrossRef]

Abstract, Am. Ceram. Soc. Bull. (1)

J. W. Fleming, E. A. Sigety, “Properties of Glasses in the GeO2–B2O3–SiO2 System,” Abstract, Am. Ceram. Soc. Bull. 53, 664 (1974).

Appl. Opt. (4)

Bell Syst. Tech. J. (2)

G. E. Peterson, A. Carneval, U. C. Paek, J. W. Fleming, “Numerical Calculation of Optimum α for a Germania-Doped Silica Lightguide,” Bell Syst. Tech. J. 60, 455 (1981).

K. Nassau, “The Material Dispersion Zero in Infrared Optical Waveguide Materials,” Bell Syst. Tech. J. 60, 237 (1981).

Elect. Lett. (1)

N. Shibata, S. Shibata, T. Edahiro, “Refractive Index Dispersion of Lightguide Glasses at High Temperature,” Elect. Lett. 17, 310 (1981).
[CrossRef]

Electron. Lett. (5)

D. N. Payne, A. H. Hartog, “Determination of the Wavelength of Zero Material Dispersion in Optical Fibers by Pulse-Delay Measurements,” Electron. Lett. 13, 627 (1977).
[CrossRef]

H. Osanai et al., “Effect of Dopants on Transmission Loss of Low-OH-Content Optical Fibers,” Electron. Lett. 12, 549 (1976).
[CrossRef]

J. A. Arnaud, J. W. Fleming, “Pulse Broadening in Multimode Optical Fibers With Large An/n: Numerical Results,” Electron. Lett. 12, 7 (1976).
[CrossRef]

F. M. E. Sladen, D. N. Payne, M. J. Adams, “Definitive Profile-Dispersion Data for Germania-Doped Silica Fibers Over an Extended Wavelength Range,” Electron. Lett. 15, 469 (1979).
[CrossRef]

J. W. Fleming, “Material Dispersion in Lightguide Glasses,” Electron. Lett. 14, 326 (1978).
[CrossRef]

Inorg. Mat. (1)

V. A. Kolesova, E. S. Sher, “Two-Component Glasses of the System GeO2–SiO2,” Inorg. Mat. 9, 1018 (1973).

J. Am. Ceram. Soc. (1)

J. W. Fleming, “Material and Mode Dispersion in GeO2–B2O3–SiO2 Glasses,” J. Am. Ceram. Soc. 59, 503 (1976).
[CrossRef]

J. Appl. Phys. (1)

S. H. Wemple et al., “Binary SiO2–B2O3 Glass System: Refractive Index Behavior and Energy Gap Considerations,” J. Appl. Phys. 44, 5432 (1973).
[CrossRef]

J. Non-Cryst. Solids (2)

Y. Y. Huang, A. Sarkar, P. C. Schultz, “Relationship Between Composition, Density, and Refractive Index for Germania Silica Glasses,” J. Non-Cryst. Solids 27, 29 (1978).
[CrossRef]

W. A. Sproson, K. B. Lyons, J. W. Fleming, “Nondestructive Concentration Profiling of Fiber Optic Preforms by Analysis of Raman Spectra,” J. Non-Cryst. Solids 45, 69 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Chem. (1)

L. M. Dennis, A. W. Laubengayer, “Germanium XVII. Fused Germanium Dioxide and Some Germanium Glasses,” J. Phys. Chem. 30, 1510 (1926).
[CrossRef]

Opt. Quantum Electron. (1)

C. R. Hammond, “Silica-Based Binary Glass Systems: Wavelength Dispersive Properties and Composition in Optical Fibers,” Opt. Quantum Electron. 10, 163 (1978).
[CrossRef]

Phys. Chem. Glasses (1)

C. R. Kurkjian, R. W. Douglas, “The Viscosity of Glasses in the System Na2O–GeO2,” Phys. Chem. Glasses 1, 19 (1960).

Rev. Sci. Instrum. (1)

D. L. Wood, J. W. Fleming, “Computerized Refractive Index Measurements for Bulk Materials at UV, Visible, and IR Wavelengths,” Rev. Sci. Instrum. 53, 1 (1982).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. G. Devyatykh et al., “Material Dispersion and Rayleigh Scattering in Glassy Germanium Dioxide, a Substance with Promising Applications in Low-Loss Optical Fiber Waveguides,” Sov. J. Quantum Electron. 10, 900 (1980).
[CrossRef]

Other (6)

S. Kobayashi, S. Shibata, T. Izawa, “Refractive-Index Dispersion of Doped Fused Silica,” in International Conference on Integrated Optics and Optical Fiber Communication, Tokyo, (1977), p. 309.

R. D. Maurer, P. C. Schultz, U.S. Patent3,844,550 (1975).

W. A. Burnette, C. S. Roberts, AT&T Bell Laboratories, Murray Hill, NJ., private communication.

J. W. Fleming, J. R. Simpson, previously unpublished.

M. G. Kendall, A. Stuart, Advanced Theory in Statistics V. Distribution Theory (Hafner, New York, 1961).

R. Olshansky, G. W. Scherer, Optical Communications Conference, Amsterdam, Sept. 1979, Abstract 1.103.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Material dispersion for GeO2 glass from 0.8 to 1.8 μm. Zero crossing is 1.738 μm.

Fig. 2
Fig. 2

Transmission of a 1-cm thick piece of GeO2 glass.

Fig. 3
Fig. 3

Refractive index at λ = 0.5893 vs composition for GeO2–SiO2 glasses prepared and measured by various researchers. The line represents the computed values using the mixed Sellmeier model.

Fig. 4
Fig. 4

Portion of Fig. 3 showing composition region of current interest for lightguides.

Fig. 5
Fig. 5

Refractive index at 1.3622 vs composition for GeO2–SiO2 glasses prepared and measured by two researchers.

Fig. 6
Fig. 6

Portion of Fig. 5 showing composition region of current interest for lightguides.

Fig. 7
Fig. 7

Dependence of dn/dλ on n at 1.0 μm for GeO2–SiO2 glasses computed from the mixed Sellmeier model.

Fig. 8
Fig. 8

First derivative of refractive index vs index at 1.0 μm showing empirically obtained points of Fleming, Kobayashi, and Shibata and the computed line from the mixed Sellmeier model.

Fig. 9
Fig. 9

Optimum α as a function of wavelength for fiber and bulk calculations of 0.23 N.A. GeO2–SiO2 core–SiO2 clad lightguides and a GeO2 core–SiO2 clad lightguide.

Fig. 10
Fig. 10

Optimum α as a function of wavelength using the mixed Sellmeier model for a 0.2 N.A. lightguide having a 0.09GeO2 · 0.91SiO2 core and an SiO2 cladding – – –, a 0.02 N.A. fiber having a GeO2 core and a 0.91GeO2 · 0.09SiO2 cladding …, a 0.3 N.A. fiber having a 0.20GeO2 · 0.80SiO2 core and a SiO2 cladding –, and a 0.3 N.A. fiber having a GeO2 core and a 0.81GeO2 · 0.19SiO2 cladding – · –.

Fig. 11
Fig. 11

Wavelength of zero material dispersion for GeO2–SiO2 glasses calculated from the mixed Sellmeier model compared with various measurements on bulk and fiber specimens.

Tables (2)

Tables Icon

Table I Average Values of Measured Refractive Indices

Tables Icon

Table II Sellmeier Coefficients for SiO2 from Malitson19 and for GeO2 from this Work

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 2 - 1 = i = 1 3 A i λ 2 λ 2 - l i 2 ,
n 2 - 1 = i = 1 3 [ S A i + X ( G A i - S A i ) ] λ 2 λ 2 - [ S l i + X ( G l i - S l i ) ] 2 ,
n 2 ( r ) = n 1 2 [ 1 - 2 Δ · f ( r , a ) ] , r < a ,
α = 2 + P - Δ ( 4 + P ) ( 3 + P ) ( 5 + 2 P ) ,
P = - 2 n 1 N 1 λ Δ d Δ d λ ,
Δ = n 1 - n 2 n 1 ,

Metrics