Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 Laser,” Opt. Lett. 4, 253 (1979).
    [CrossRef] [PubMed]
  2. R. K. Brimacombe, J. Reid, “15-mJ Pulses from a 4.3-μm CO2 Laser,” Appl. Phys. Lett., accepted for publication.
  3. T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm Cascade CO2 Laser,” Appl. Phys. Lett. 45, 813 (1984).
    [CrossRef]
  4. R. P. Johnson, “Further Characterization of the 4.4-μm 13C16O2 Cascade Laser,” Appl. Phys. Lett. 44, 1119 (1984).
    [CrossRef]
  5. T. A. Znotins, J. Reid, R. K. Brimacombe, “Design of Efficient Transversely Excited Sequence CO2 Lasers,” J. Appl. Phys. 53, 2843 (1982).
    [CrossRef]
  6. Removal of the present dichroic mirror increases the in-cavity sequence intensity by a factor of 4.

1984 (2)

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm Cascade CO2 Laser,” Appl. Phys. Lett. 45, 813 (1984).
[CrossRef]

R. P. Johnson, “Further Characterization of the 4.4-μm 13C16O2 Cascade Laser,” Appl. Phys. Lett. 44, 1119 (1984).
[CrossRef]

1982 (1)

T. A. Znotins, J. Reid, R. K. Brimacombe, “Design of Efficient Transversely Excited Sequence CO2 Lasers,” J. Appl. Phys. 53, 2843 (1982).
[CrossRef]

1979 (1)

Ballik, E. A.

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm Cascade CO2 Laser,” Appl. Phys. Lett. 45, 813 (1984).
[CrossRef]

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 Laser,” Opt. Lett. 4, 253 (1979).
[CrossRef] [PubMed]

Brimacombe, R. K.

T. A. Znotins, J. Reid, R. K. Brimacombe, “Design of Efficient Transversely Excited Sequence CO2 Lasers,” J. Appl. Phys. 53, 2843 (1982).
[CrossRef]

R. K. Brimacombe, J. Reid, “15-mJ Pulses from a 4.3-μm CO2 Laser,” Appl. Phys. Lett., accepted for publication.

Garside, B. K.

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm Cascade CO2 Laser,” Appl. Phys. Lett. 45, 813 (1984).
[CrossRef]

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 Laser,” Opt. Lett. 4, 253 (1979).
[CrossRef] [PubMed]

Johnson, R. P.

R. P. Johnson, “Further Characterization of the 4.4-μm 13C16O2 Cascade Laser,” Appl. Phys. Lett. 44, 1119 (1984).
[CrossRef]

Reid, J.

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm Cascade CO2 Laser,” Appl. Phys. Lett. 45, 813 (1984).
[CrossRef]

T. A. Znotins, J. Reid, R. K. Brimacombe, “Design of Efficient Transversely Excited Sequence CO2 Lasers,” J. Appl. Phys. 53, 2843 (1982).
[CrossRef]

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 Laser,” Opt. Lett. 4, 253 (1979).
[CrossRef] [PubMed]

R. K. Brimacombe, J. Reid, “15-mJ Pulses from a 4.3-μm CO2 Laser,” Appl. Phys. Lett., accepted for publication.

Znotins, T. A.

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm Cascade CO2 Laser,” Appl. Phys. Lett. 45, 813 (1984).
[CrossRef]

T. A. Znotins, J. Reid, R. K. Brimacombe, “Design of Efficient Transversely Excited Sequence CO2 Lasers,” J. Appl. Phys. 53, 2843 (1982).
[CrossRef]

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm TE CO2 Laser,” Opt. Lett. 4, 253 (1979).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

T. A. Znotins, J. Reid, B. K. Garside, E. A. Ballik, “4.3-μm Cascade CO2 Laser,” Appl. Phys. Lett. 45, 813 (1984).
[CrossRef]

R. P. Johnson, “Further Characterization of the 4.4-μm 13C16O2 Cascade Laser,” Appl. Phys. Lett. 44, 1119 (1984).
[CrossRef]

J. Appl. Phys. (1)

T. A. Znotins, J. Reid, R. K. Brimacombe, “Design of Efficient Transversely Excited Sequence CO2 Lasers,” J. Appl. Phys. 53, 2843 (1982).
[CrossRef]

Opt. Lett. (1)

Other (2)

R. K. Brimacombe, J. Reid, “15-mJ Pulses from a 4.3-μm CO2 Laser,” Appl. Phys. Lett., accepted for publication.

Removal of the present dichroic mirror increases the in-cavity sequence intensity by a factor of 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Simplified energy level diagram of CO2.

Fig. 2
Fig. 2

Schematic diagram of a simplified cavity arrangement for the 4.3-μm CO2 laser. Two alternative Q-switching techniques are indicated. The 12-cm long SF6 cell contains ~1-Torr pure SF6, while the rotating mirror spins at ~100 Hz. The dichroic mirror transmits ~90% at 10 μm and reflects ~87% at 4.3 μm.

Metrics