Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Venkatesh, C. R. Prasad, “Corrections for Mie Theory Given in ‘The Scattering of Light and Other Electromagnetic Radiation’,” Appl. Opt. 22, 645 (1983).
    [CrossRef]
  2. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  3. P. Venkatesh, C. R. Prasad, “Corrections for Mie Theory Given in The Scattering of Light and Other Electromagnetic Radiation by Kerker,” Laser Lab Report ME-LLR-17 (1982), Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012.
  4. G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. Paris 13, 97 (1982).
    [CrossRef]
  5. G. Gouesbet, G. Gréhan, “A Formalism to Compute the Scattered Intensities from an Isotropic, Homogeneous, Spherical, Non-magnetic Particle Located on the Axis of an Axisymmetric Incident Light Profile, Using Bromwich Functions,” Internal report TTI/GG/80/06/IV.
  6. G. Gréhan, G. Gouesbet, “Mie Theory Calculations: New Progress with Emphasis on Particle Sizing,” Appl. Opt. 18, 3489 (1979).
    [CrossRef] [PubMed]
  7. A. Ungut, G. Gréhan, G. Gouesbet, “Comparisons Between Geometrical Optics and Lorenz-Mie Theory,” Appl. Opt. 20, 2911 (1981).
    [CrossRef] [PubMed]
  8. D. S. Jones, Theory of Electromagnetism (Pergamon, New York, 1964).

1983 (1)

1982 (1)

G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. Paris 13, 97 (1982).
[CrossRef]

1981 (1)

1979 (1)

Gouesbet, G.

G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. Paris 13, 97 (1982).
[CrossRef]

A. Ungut, G. Gréhan, G. Gouesbet, “Comparisons Between Geometrical Optics and Lorenz-Mie Theory,” Appl. Opt. 20, 2911 (1981).
[CrossRef] [PubMed]

G. Gréhan, G. Gouesbet, “Mie Theory Calculations: New Progress with Emphasis on Particle Sizing,” Appl. Opt. 18, 3489 (1979).
[CrossRef] [PubMed]

G. Gouesbet, G. Gréhan, “A Formalism to Compute the Scattered Intensities from an Isotropic, Homogeneous, Spherical, Non-magnetic Particle Located on the Axis of an Axisymmetric Incident Light Profile, Using Bromwich Functions,” Internal report TTI/GG/80/06/IV.

Gréhan, G.

G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. Paris 13, 97 (1982).
[CrossRef]

A. Ungut, G. Gréhan, G. Gouesbet, “Comparisons Between Geometrical Optics and Lorenz-Mie Theory,” Appl. Opt. 20, 2911 (1981).
[CrossRef] [PubMed]

G. Gréhan, G. Gouesbet, “Mie Theory Calculations: New Progress with Emphasis on Particle Sizing,” Appl. Opt. 18, 3489 (1979).
[CrossRef] [PubMed]

G. Gouesbet, G. Gréhan, “A Formalism to Compute the Scattered Intensities from an Isotropic, Homogeneous, Spherical, Non-magnetic Particle Located on the Axis of an Axisymmetric Incident Light Profile, Using Bromwich Functions,” Internal report TTI/GG/80/06/IV.

Jones, D. S.

D. S. Jones, Theory of Electromagnetism (Pergamon, New York, 1964).

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

Prasad, C. R.

P. Venkatesh, C. R. Prasad, “Corrections for Mie Theory Given in ‘The Scattering of Light and Other Electromagnetic Radiation’,” Appl. Opt. 22, 645 (1983).
[CrossRef]

P. Venkatesh, C. R. Prasad, “Corrections for Mie Theory Given in The Scattering of Light and Other Electromagnetic Radiation by Kerker,” Laser Lab Report ME-LLR-17 (1982), Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012.

Ungut, A.

Venkatesh, P.

P. Venkatesh, C. R. Prasad, “Corrections for Mie Theory Given in ‘The Scattering of Light and Other Electromagnetic Radiation’,” Appl. Opt. 22, 645 (1983).
[CrossRef]

P. Venkatesh, C. R. Prasad, “Corrections for Mie Theory Given in The Scattering of Light and Other Electromagnetic Radiation by Kerker,” Laser Lab Report ME-LLR-17 (1982), Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012.

Appl. Opt. (3)

J. Opt. Paris (1)

G. Gouesbet, G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. Paris 13, 97 (1982).
[CrossRef]

Other (4)

G. Gouesbet, G. Gréhan, “A Formalism to Compute the Scattered Intensities from an Isotropic, Homogeneous, Spherical, Non-magnetic Particle Located on the Axis of an Axisymmetric Incident Light Profile, Using Bromwich Functions,” Internal report TTI/GG/80/06/IV.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).

P. Venkatesh, C. R. Prasad, “Corrections for Mie Theory Given in The Scattering of Light and Other Electromagnetic Radiation by Kerker,” Laser Lab Report ME-LLR-17 (1982), Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560012.

D. S. Jones, Theory of Electromagnetism (Pergamon, New York, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r π 1 i = 1 k 2 n = 1 ( - i ) n - 1 2 n + 1 n ( n + 1 ) ψ n ( k r ) P n 1 ( cos θ ) cos φ ,
r π 2 i = i k K 2 n = 1 ( - i ) n - 1 2 n + 1 n ( n + 1 ) ψ n ( k r ) P n 1 ( cos θ ) sin φ ,
E θ = E 1 θ + E 2 θ = 1 r 2 ( r π 1 ) r θ + K 2 1 r sin θ ( r π 2 ) φ .
E θ = cos φ r n = 1 ( - 1 ) n i n + 1 2 n + 1 n ( n + 1 ) [ 1 k d d r r ψ n 1 ( k r ) d P n 1 ( cos θ ) d θ + i r ψ n 1 ( k r ) P n 1 ( cos θ ) sin θ ] .
n = 1 ( - 1 ) n i n + 1 2 n + 1 n ( n + 1 ) [ - 1 k d d r r ψ n 1 ( k r ) d P n 1 ( cos θ ) d θ - i r ψ n 1 ( k r ) P n 1 ( cos θ ) sin θ ] = r cos θ exp ( - i k r cos θ ) ,
n = 1 ( - 1 ) n i n + 1 2 n + 1 n ( n + 1 ) × [ - 1 k d d r r ψ n 1 ( k r ) d P n 1 ( cos θ ) d θ + i r ψ n 1 ( k r ) P n 1 ( cos θ ) sin θ ] = r cos θ exp ( - i k r cos θ ) .
n = 1 ( - 1 ) n i n + 1 2 n + 1 n ( n + 1 ) × [ - 1 ρ d d ρ ρ ψ n 1 ( ρ ) d P n 1 ( cos θ ) d θ + i ψ n 1 ( ρ ) P n 1 ( cos θ ) sin θ ] = cos θ exp ( - i k r cos θ ) .
h = n = 1 ( - 1 ) n + 1 i n + 1 2 n + 1 n ( n + 1 ) ψ n 1 ( ρ ) P n 1 ( cos θ ) = exp ( - i ρ cos θ ) - exp ( - i ρ ) - i ( 1 - cos θ ) sin ρ ρ sin θ .
g = - i h / sin θ ,
f = 1 ρ ρ ρ h θ .

Metrics