Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Meynart, “Instantaneous Velocity Field Measurements in Unsteady Gas Flows by Speckle Velocimetry,” Appl. Opt. 22, 535 (1983).
    [CrossRef] [PubMed]
  2. C. J. D. Pickering, N. A. Halliwell, “Speckle Photography in Fluid Flows: Signal Recovery with Two-Step Processing,” Appl. Opt. 23, 1128 (1984).
    [CrossRef] [PubMed]
  3. D. B. Barker, M. E. Fourney, “Measuring Fluid Velocities with Speckle Patterns,” Opt. Lett. 1, 135 (1977).
    [CrossRef] [PubMed]
  4. T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
    [CrossRef]
  5. R. Grousson, S. Mallick, “Study of Flow Pattern in a Fluid by Scattered Laser Light,” Appl. Opt. 16, 2334 (1977).
    [CrossRef] [PubMed]
  6. K. Hinsch, D. Mach, in Flow Visualization III, W. Yang, Ed. (in press).
  7. W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
    [CrossRef]
  8. U. Köpf, “Correlation Between Speckle Patterns of Laser Photographs Recorded on Different Photographic Plates,” Opt. Commun. 9, 374 (1973).
    [CrossRef]
  9. D. Léger, J. C. Perrin, “Real-Time Measurement of Surface Roughness by Correlation of Speckle Patterns,” J. Opt. Soc. Am. 66, 1210 (1976).
    [CrossRef]
  10. J. N. Butters, R. Jones, C. Wykes, in Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), p. 111.
    [CrossRef]
  11. J. A. Mendez, M. L. Roblin, “Contrast of Speckle Correlation Fringes in Presence of a Longitudinal Displacement Between the Two Exposures,” Nouv. Rev. Opt. 7, 105 (1976).
    [CrossRef]
  12. O. F. Gencili, J. B. Schemm, C. M. Vest, “Measurement of Size and Concentration of Scattering Particles by Speckle Photography,” J. Opt. Soc. Am. 70, 1212 (1980).
    [CrossRef]
  13. I. Yamaguchi, “Fringe Loci and Visibility in Holographic Interferometry with Diffuse Objects I. Fringes of Equal Inclination,” Opt. Acta 24, 1011 (1977); “II. Fringes of Equal Thickness,” Opt. Acta 25, 299 (1978).
    [CrossRef]
  14. I. Yamaguchi, “Fringe Formation in Speckle Photography,” J. Opt. Soc. Am. A 1, 81 (1984).
    [CrossRef]
  15. K. A. Stetson, “Vulnerability of Speckle Photography to Lens Aberrations,” J. Opt. Soc. Am. 67, 1587 (1977).
    [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 499.
  17. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, Tokyo, 1965), p. 213.

1984 (3)

1983 (1)

1980 (1)

1977 (5)

I. Yamaguchi, “Fringe Loci and Visibility in Holographic Interferometry with Diffuse Objects I. Fringes of Equal Inclination,” Opt. Acta 24, 1011 (1977); “II. Fringes of Equal Thickness,” Opt. Acta 25, 299 (1978).
[CrossRef]

K. A. Stetson, “Vulnerability of Speckle Photography to Lens Aberrations,” J. Opt. Soc. Am. 67, 1587 (1977).
[CrossRef]

D. B. Barker, M. E. Fourney, “Measuring Fluid Velocities with Speckle Patterns,” Opt. Lett. 1, 135 (1977).
[CrossRef] [PubMed]

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

R. Grousson, S. Mallick, “Study of Flow Pattern in a Fluid by Scattered Laser Light,” Appl. Opt. 16, 2334 (1977).
[CrossRef] [PubMed]

1976 (2)

D. Léger, J. C. Perrin, “Real-Time Measurement of Surface Roughness by Correlation of Speckle Patterns,” J. Opt. Soc. Am. 66, 1210 (1976).
[CrossRef]

J. A. Mendez, M. L. Roblin, “Contrast of Speckle Correlation Fringes in Presence of a Longitudinal Displacement Between the Two Exposures,” Nouv. Rev. Opt. 7, 105 (1976).
[CrossRef]

1973 (1)

U. Köpf, “Correlation Between Speckle Patterns of Laser Photographs Recorded on Different Photographic Plates,” Opt. Commun. 9, 374 (1973).
[CrossRef]

Barker, D. B.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 499.

Butters, J. N.

J. N. Butters, R. Jones, C. Wykes, in Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), p. 111.
[CrossRef]

Dudderar, T. D.

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

Fourney, M. E.

Gencili, O. F.

Grousson, R.

Halliwell, N. A.

Hinsch, K.

K. Hinsch, D. Mach, in Flow Visualization III, W. Yang, Ed. (in press).

Jones, R.

J. N. Butters, R. Jones, C. Wykes, in Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), p. 111.
[CrossRef]

Köpf, U.

U. Köpf, “Correlation Between Speckle Patterns of Laser Photographs Recorded on Different Photographic Plates,” Opt. Commun. 9, 374 (1973).
[CrossRef]

Lauterborn, W.

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
[CrossRef]

Léger, D.

Mach, D.

K. Hinsch, D. Mach, in Flow Visualization III, W. Yang, Ed. (in press).

Mallick, S.

Mendez, J. A.

J. A. Mendez, M. L. Roblin, “Contrast of Speckle Correlation Fringes in Presence of a Longitudinal Displacement Between the Two Exposures,” Nouv. Rev. Opt. 7, 105 (1976).
[CrossRef]

Meynart, R.

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, Tokyo, 1965), p. 213.

Perrin, J. C.

Pickering, C. J. D.

Roblin, M. L.

J. A. Mendez, M. L. Roblin, “Contrast of Speckle Correlation Fringes in Presence of a Longitudinal Displacement Between the Two Exposures,” Nouv. Rev. Opt. 7, 105 (1976).
[CrossRef]

Schemm, J. B.

Simpkins, P. G.

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

Stetson, K. A.

Vest, C. M.

Vogel, A.

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 499.

Wykes, C.

J. N. Butters, R. Jones, C. Wykes, in Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), p. 111.
[CrossRef]

Yamaguchi, I.

I. Yamaguchi, “Fringe Formation in Speckle Photography,” J. Opt. Soc. Am. A 1, 81 (1984).
[CrossRef]

I. Yamaguchi, “Fringe Loci and Visibility in Holographic Interferometry with Diffuse Objects I. Fringes of Equal Inclination,” Opt. Acta 24, 1011 (1977); “II. Fringes of Equal Thickness,” Opt. Acta 25, 299 (1978).
[CrossRef]

Ann. Rev. Fluid Mech. (1)

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Ann. Rev. Fluid Mech. 16, 223 (1984).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Nature London (1)

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

Nouv. Rev. Opt. (1)

J. A. Mendez, M. L. Roblin, “Contrast of Speckle Correlation Fringes in Presence of a Longitudinal Displacement Between the Two Exposures,” Nouv. Rev. Opt. 7, 105 (1976).
[CrossRef]

Opt. Acta (1)

I. Yamaguchi, “Fringe Loci and Visibility in Holographic Interferometry with Diffuse Objects I. Fringes of Equal Inclination,” Opt. Acta 24, 1011 (1977); “II. Fringes of Equal Thickness,” Opt. Acta 25, 299 (1978).
[CrossRef]

Opt. Commun. (1)

U. Köpf, “Correlation Between Speckle Patterns of Laser Photographs Recorded on Different Photographic Plates,” Opt. Commun. 9, 374 (1973).
[CrossRef]

Opt. Lett. (1)

Other (4)

K. Hinsch, D. Mach, in Flow Visualization III, W. Yang, Ed. (in press).

J. N. Butters, R. Jones, C. Wykes, in Speckle Metrology, R. K. Erf, Ed. (Academic, New York, 1978), p. 111.
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 499.

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, Tokyo, 1965), p. 213.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Systems of Young’s fringes from computer produced specklegrams; (a) all particles experience equal displacement; (b) the particles experience random displacement in one direction, the displacements are uniformly distributed around an average value that is equal to the displacement in (a).

Fig. 2
Fig. 2

Fringe visibility as evaluated from the fringe systems of Figs. 1(a) and (b), respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

V ( n ^ ) = Γ ( n ^ ) / I ,
E ( n ^ ) = l = 1 L E l ( n ^ ) .
E ( n ^ ) = l = 1 L E l ( n ^ ) exp ( i k s l · n ^ ) ,
Γ ( n ^ ) = l , m = 1 L E l * ( n ^ ) E m ( n ^ ) exp ( i k s m · n ^ ) .
Γ ( n ^ ) = l = 1 L E l 2 exp ( i k s l · n ^ ) .
Γ ( n ^ ) = I 0 l = 1 L exp ( i k s l · n ^ ) ,
Γ ( n ^ ) = L I 0 exp ( i k s · n ^ ) ,
exp [ i ( k n x s x + k n y s y ) ] ,
exp ( i k s · n ^ ) = G ( k n x , k n y ) ,
Γ ( n ^ ) = L I 0 G ( k n x , k n y ) ,
V ( n ^ ) = G ( k n x , k n y ) .

Metrics