Abstract

Recording and reconstruction of the polarization state of the object beam is achieved by using dyed red plastic as a holographic material. Holographic characteristics are presented of dyed red plastic involving beam powers ranging between 3 and 120 mW/cm2 and exposure times in the order of minutes. It is also shown that the resulting modulation becomes photostationary under continuous exposure.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Smith, Holographic Materials (Springer, Berlin, 1977).
    [CrossRef]
  2. A. W. Lohman, “Reconstruction of Vectorial Wavefronts,” Appl. Opt. 4, 1667 (1965).
    [CrossRef]
  3. O. Bryngdahl, “Polarizing Holography,” J. Opt. Soc. Am. 57, 545 (1967).
    [CrossRef] [PubMed]
  4. S. C. Som, R. A. Lessard, “Holographic Record of Polarization With Volume Holograms,” Appl. Phys. Lett. 17, 381 (1970).
    [CrossRef]
  5. Sh. D. Kakischavili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 324 (1972).
  6. J. M. Jonathan, M. May, “Application of the Weigert Effect to the Contrast reversal of a Black and White Transparency,” Opt. Commun. 28, 30 (1979).
    [CrossRef]
  7. C. K. Wu, “Alterable Photodichroic Treated Glasses,” J. Opt. Soc. Am. 68, 1396 A (1978). Opt. Soc. of A. Annual MeetingNov. 1, 1978.
  8. I. Schneider, “Information Storage Using the Anisotropy of Color Centers in Alkali halide Crystals,” Appl. Opt. 6, 2197 (1967).
    [CrossRef] [PubMed]
  9. I. Schneider, M. Marrone, M. N. Kabler, “Dichroic Absorption of M Centers as a Basis for Optical Information Storage,” Appl. Opt. 9, 1163 (1970).
    [CrossRef] [PubMed]
  10. L. F. Lanz, U. Roder, W. Waidelich, “Hologram Recording by Aligning of Anisotropic Colour Centers,” Appl. Phys. Lett. 18, 56 (1971).
    [CrossRef]
  11. I. Schneider, “Simplified Technique for Storing Information in Photodichroic Alkali-Halide Halides Crystals,” Appl. Opt. 11, 1426 (1972).
    [CrossRef] [PubMed]
  12. J. Burt, H. Knoebel, V. Krone, B. Kikwood, “Experimental High Density Optical Memory Using the Dichroic Absorption of the Ma Color Center,” Appl. Opt. 12, 1213 (1973).
    [CrossRef] [PubMed]
  13. U. Roder, “Storage Properties of Fa Centre Holograms,” Opt. Commun. 6, 270 (1972).
    [CrossRef]
  14. I. Schneider, “Dispersion and Diffraction by Anisotropic Centers in Alkali Halide,” Phys. Rev. Lett. 32, 412 (1974).
    [CrossRef]
  15. I. Schneider, M. Lehmann, R. Bocker, “Extinction Technique for Optical Storage Using Anisotropic Color Centres in Alkali Halides,” Appl. Phys. Lett. 25, 77 (1974).
    [CrossRef]
  16. H. Blume, T. Bader, F. Luty, “Bi-Directional Holographic Information Storage Based on the Optical Reorientation of Fa Centres in KCl:Na,” Opt. Commun. 12, 147 (1974).
    [CrossRef]
  17. H. Blume, “Highly Efficient Dichroic Phase Holograms in KCl:Na,” Opt. Acta 2, 357 (1974).
  18. I. Schneider, M. Gingerich, “Diffraction by M Centers in KCl:Na,” Appl. Opt. 15, 2428 (1970).
    [CrossRef]
  19. L. Nikolova, T. Todorov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
    [CrossRef]
  20. L. Nikolova, T. Todorov, P. Stefanova, “Polarization Sensibility of the Photodichroic Holographic Recording,” Opt. Commun. 24, 44 (1978).
    [CrossRef]
  21. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Sys. Tech. J. 48, 2909 (1969).
  22. D. Casasent, F. Caimi, “Adaptive Photodichroic Matched Spatial Filter,” Appl. Opt. 15, 2631 (1976).
    [CrossRef] [PubMed]
  23. S. Calixto, R. A. Lessard, “Reseaux Optiques Enregistres Sur un Milieu du Plastique Coloree,” Ann. Assoc. Can. Fr. Avanc. Sci. 50, 193 (1983).
  24. S. Calixto, R. A. Lessard, “Transient Holograms in Dyed Plastic,” Appl. Opt. 23, 211 (1984).
    [CrossRef] [PubMed]
  25. M. R. B. Forshaw, “Thick Holograms: A Survey,” Opt. Laser Technol. 7, 28 (1974).
    [CrossRef]
  26. M. P. Petrov, S. V. Mirindov, S. I. Stepanov, V. V. Kulikov, “Light Diffraction and Nonlinear Image Processing in Electrooptic BiSiO Crystals,” Opt. Commun. 31, 301 (1979).
    [CrossRef]
  27. S. Mezrich, “Magnetic Holography,” Appl. Opt. 9, 2275 (1970).
    [CrossRef] [PubMed]
  28. J. P. Herriau, J. P. Huignard, P. Aubourg, “Some Polarization Properties of Volume Holograms in BiSiO Crystals and Applications,” Appl. Opt. 17, 1851 (1978).
    [CrossRef] [PubMed]
  29. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 14.
  30. T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material With Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
    [CrossRef]
  31. Rohm and Haas, red Plexiglas 2423, West Hill, Ont.
  32. M. Miteva, L. Nikolova, “Polarization Characteristics of Volume Holograms in BiSiO,” Opt. Commun. 42, 307 (1982).
    [CrossRef]

1984 (1)

1983 (2)

S. Calixto, R. A. Lessard, “Reseaux Optiques Enregistres Sur un Milieu du Plastique Coloree,” Ann. Assoc. Can. Fr. Avanc. Sci. 50, 193 (1983).

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material With Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

1982 (1)

M. Miteva, L. Nikolova, “Polarization Characteristics of Volume Holograms in BiSiO,” Opt. Commun. 42, 307 (1982).
[CrossRef]

1979 (2)

J. M. Jonathan, M. May, “Application of the Weigert Effect to the Contrast reversal of a Black and White Transparency,” Opt. Commun. 28, 30 (1979).
[CrossRef]

M. P. Petrov, S. V. Mirindov, S. I. Stepanov, V. V. Kulikov, “Light Diffraction and Nonlinear Image Processing in Electrooptic BiSiO Crystals,” Opt. Commun. 31, 301 (1979).
[CrossRef]

1978 (3)

J. P. Herriau, J. P. Huignard, P. Aubourg, “Some Polarization Properties of Volume Holograms in BiSiO Crystals and Applications,” Appl. Opt. 17, 1851 (1978).
[CrossRef] [PubMed]

C. K. Wu, “Alterable Photodichroic Treated Glasses,” J. Opt. Soc. Am. 68, 1396 A (1978). Opt. Soc. of A. Annual MeetingNov. 1, 1978.

L. Nikolova, T. Todorov, P. Stefanova, “Polarization Sensibility of the Photodichroic Holographic Recording,” Opt. Commun. 24, 44 (1978).
[CrossRef]

1977 (1)

L. Nikolova, T. Todorov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

1976 (1)

1974 (5)

M. R. B. Forshaw, “Thick Holograms: A Survey,” Opt. Laser Technol. 7, 28 (1974).
[CrossRef]

I. Schneider, “Dispersion and Diffraction by Anisotropic Centers in Alkali Halide,” Phys. Rev. Lett. 32, 412 (1974).
[CrossRef]

I. Schneider, M. Lehmann, R. Bocker, “Extinction Technique for Optical Storage Using Anisotropic Color Centres in Alkali Halides,” Appl. Phys. Lett. 25, 77 (1974).
[CrossRef]

H. Blume, T. Bader, F. Luty, “Bi-Directional Holographic Information Storage Based on the Optical Reorientation of Fa Centres in KCl:Na,” Opt. Commun. 12, 147 (1974).
[CrossRef]

H. Blume, “Highly Efficient Dichroic Phase Holograms in KCl:Na,” Opt. Acta 2, 357 (1974).

1973 (1)

1972 (3)

I. Schneider, “Simplified Technique for Storing Information in Photodichroic Alkali-Halide Halides Crystals,” Appl. Opt. 11, 1426 (1972).
[CrossRef] [PubMed]

Sh. D. Kakischavili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 324 (1972).

U. Roder, “Storage Properties of Fa Centre Holograms,” Opt. Commun. 6, 270 (1972).
[CrossRef]

1971 (1)

L. F. Lanz, U. Roder, W. Waidelich, “Hologram Recording by Aligning of Anisotropic Colour Centers,” Appl. Phys. Lett. 18, 56 (1971).
[CrossRef]

1970 (4)

1969 (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Sys. Tech. J. 48, 2909 (1969).

1967 (2)

1965 (1)

Aubourg, P.

Bader, T.

H. Blume, T. Bader, F. Luty, “Bi-Directional Holographic Information Storage Based on the Optical Reorientation of Fa Centres in KCl:Na,” Opt. Commun. 12, 147 (1974).
[CrossRef]

Blume, H.

H. Blume, T. Bader, F. Luty, “Bi-Directional Holographic Information Storage Based on the Optical Reorientation of Fa Centres in KCl:Na,” Opt. Commun. 12, 147 (1974).
[CrossRef]

H. Blume, “Highly Efficient Dichroic Phase Holograms in KCl:Na,” Opt. Acta 2, 357 (1974).

Bocker, R.

I. Schneider, M. Lehmann, R. Bocker, “Extinction Technique for Optical Storage Using Anisotropic Color Centres in Alkali Halides,” Appl. Phys. Lett. 25, 77 (1974).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 14.

Bryngdahl, O.

Burt, J.

Caimi, F.

Calixto, S.

S. Calixto, R. A. Lessard, “Transient Holograms in Dyed Plastic,” Appl. Opt. 23, 211 (1984).
[CrossRef] [PubMed]

S. Calixto, R. A. Lessard, “Reseaux Optiques Enregistres Sur un Milieu du Plastique Coloree,” Ann. Assoc. Can. Fr. Avanc. Sci. 50, 193 (1983).

Casasent, D.

Forshaw, M. R. B.

M. R. B. Forshaw, “Thick Holograms: A Survey,” Opt. Laser Technol. 7, 28 (1974).
[CrossRef]

Gingerich, M.

Herriau, J. P.

Huignard, J. P.

Jonathan, J. M.

J. M. Jonathan, M. May, “Application of the Weigert Effect to the Contrast reversal of a Black and White Transparency,” Opt. Commun. 28, 30 (1979).
[CrossRef]

Kabler, M. N.

Kakischavili, Sh. D.

Sh. D. Kakischavili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 324 (1972).

Kikwood, B.

Knoebel, H.

Kogelnik, H.

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Sys. Tech. J. 48, 2909 (1969).

Krone, V.

Kulikov, V. V.

M. P. Petrov, S. V. Mirindov, S. I. Stepanov, V. V. Kulikov, “Light Diffraction and Nonlinear Image Processing in Electrooptic BiSiO Crystals,” Opt. Commun. 31, 301 (1979).
[CrossRef]

Lanz, L. F.

L. F. Lanz, U. Roder, W. Waidelich, “Hologram Recording by Aligning of Anisotropic Colour Centers,” Appl. Phys. Lett. 18, 56 (1971).
[CrossRef]

Lehmann, M.

I. Schneider, M. Lehmann, R. Bocker, “Extinction Technique for Optical Storage Using Anisotropic Color Centres in Alkali Halides,” Appl. Phys. Lett. 25, 77 (1974).
[CrossRef]

Lessard, R. A.

S. Calixto, R. A. Lessard, “Transient Holograms in Dyed Plastic,” Appl. Opt. 23, 211 (1984).
[CrossRef] [PubMed]

S. Calixto, R. A. Lessard, “Reseaux Optiques Enregistres Sur un Milieu du Plastique Coloree,” Ann. Assoc. Can. Fr. Avanc. Sci. 50, 193 (1983).

S. C. Som, R. A. Lessard, “Holographic Record of Polarization With Volume Holograms,” Appl. Phys. Lett. 17, 381 (1970).
[CrossRef]

Lohman, A. W.

Luty, F.

H. Blume, T. Bader, F. Luty, “Bi-Directional Holographic Information Storage Based on the Optical Reorientation of Fa Centres in KCl:Na,” Opt. Commun. 12, 147 (1974).
[CrossRef]

Marrone, M.

May, M.

J. M. Jonathan, M. May, “Application of the Weigert Effect to the Contrast reversal of a Black and White Transparency,” Opt. Commun. 28, 30 (1979).
[CrossRef]

Mezrich, S.

Mirindov, S. V.

M. P. Petrov, S. V. Mirindov, S. I. Stepanov, V. V. Kulikov, “Light Diffraction and Nonlinear Image Processing in Electrooptic BiSiO Crystals,” Opt. Commun. 31, 301 (1979).
[CrossRef]

Miteva, M.

M. Miteva, L. Nikolova, “Polarization Characteristics of Volume Holograms in BiSiO,” Opt. Commun. 42, 307 (1982).
[CrossRef]

Nikolova, L.

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material With Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

M. Miteva, L. Nikolova, “Polarization Characteristics of Volume Holograms in BiSiO,” Opt. Commun. 42, 307 (1982).
[CrossRef]

L. Nikolova, T. Todorov, P. Stefanova, “Polarization Sensibility of the Photodichroic Holographic Recording,” Opt. Commun. 24, 44 (1978).
[CrossRef]

L. Nikolova, T. Todorov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

Petrov, M. P.

M. P. Petrov, S. V. Mirindov, S. I. Stepanov, V. V. Kulikov, “Light Diffraction and Nonlinear Image Processing in Electrooptic BiSiO Crystals,” Opt. Commun. 31, 301 (1979).
[CrossRef]

Roder, U.

U. Roder, “Storage Properties of Fa Centre Holograms,” Opt. Commun. 6, 270 (1972).
[CrossRef]

L. F. Lanz, U. Roder, W. Waidelich, “Hologram Recording by Aligning of Anisotropic Colour Centers,” Appl. Phys. Lett. 18, 56 (1971).
[CrossRef]

Schneider, I.

Smith, H. M.

H. M. Smith, Holographic Materials (Springer, Berlin, 1977).
[CrossRef]

Som, S. C.

S. C. Som, R. A. Lessard, “Holographic Record of Polarization With Volume Holograms,” Appl. Phys. Lett. 17, 381 (1970).
[CrossRef]

Stefanova, P.

L. Nikolova, T. Todorov, P. Stefanova, “Polarization Sensibility of the Photodichroic Holographic Recording,” Opt. Commun. 24, 44 (1978).
[CrossRef]

Stepanov, S. I.

M. P. Petrov, S. V. Mirindov, S. I. Stepanov, V. V. Kulikov, “Light Diffraction and Nonlinear Image Processing in Electrooptic BiSiO Crystals,” Opt. Commun. 31, 301 (1979).
[CrossRef]

Todorov, T.

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material With Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

L. Nikolova, T. Todorov, P. Stefanova, “Polarization Sensibility of the Photodichroic Holographic Recording,” Opt. Commun. 24, 44 (1978).
[CrossRef]

L. Nikolova, T. Todorov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

Tomova, N.

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material With Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

Waidelich, W.

L. F. Lanz, U. Roder, W. Waidelich, “Hologram Recording by Aligning of Anisotropic Colour Centers,” Appl. Phys. Lett. 18, 56 (1971).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 14.

Wu, C. K.

C. K. Wu, “Alterable Photodichroic Treated Glasses,” J. Opt. Soc. Am. 68, 1396 A (1978). Opt. Soc. of A. Annual MeetingNov. 1, 1978.

Ann. Assoc. Can. Fr. Avanc. Sci. (1)

S. Calixto, R. A. Lessard, “Reseaux Optiques Enregistres Sur un Milieu du Plastique Coloree,” Ann. Assoc. Can. Fr. Avanc. Sci. 50, 193 (1983).

Appl. Opt. (10)

Appl. Phys. Lett. (3)

S. C. Som, R. A. Lessard, “Holographic Record of Polarization With Volume Holograms,” Appl. Phys. Lett. 17, 381 (1970).
[CrossRef]

L. F. Lanz, U. Roder, W. Waidelich, “Hologram Recording by Aligning of Anisotropic Colour Centers,” Appl. Phys. Lett. 18, 56 (1971).
[CrossRef]

I. Schneider, M. Lehmann, R. Bocker, “Extinction Technique for Optical Storage Using Anisotropic Color Centres in Alkali Halides,” Appl. Phys. Lett. 25, 77 (1974).
[CrossRef]

Bell Sys. Tech. J. (1)

H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Sys. Tech. J. 48, 2909 (1969).

J. Opt. Soc. Am. (2)

C. K. Wu, “Alterable Photodichroic Treated Glasses,” J. Opt. Soc. Am. 68, 1396 A (1978). Opt. Soc. of A. Annual MeetingNov. 1, 1978.

O. Bryngdahl, “Polarizing Holography,” J. Opt. Soc. Am. 57, 545 (1967).
[CrossRef] [PubMed]

Opt. Acta (2)

H. Blume, “Highly Efficient Dichroic Phase Holograms in KCl:Na,” Opt. Acta 2, 357 (1974).

L. Nikolova, T. Todorov, “Volume Amplitude Holograms in Photodichroic Materials,” Opt. Acta 24, 1179 (1977).
[CrossRef]

Opt. Commun. (7)

L. Nikolova, T. Todorov, P. Stefanova, “Polarization Sensibility of the Photodichroic Holographic Recording,” Opt. Commun. 24, 44 (1978).
[CrossRef]

J. M. Jonathan, M. May, “Application of the Weigert Effect to the Contrast reversal of a Black and White Transparency,” Opt. Commun. 28, 30 (1979).
[CrossRef]

M. P. Petrov, S. V. Mirindov, S. I. Stepanov, V. V. Kulikov, “Light Diffraction and Nonlinear Image Processing in Electrooptic BiSiO Crystals,” Opt. Commun. 31, 301 (1979).
[CrossRef]

H. Blume, T. Bader, F. Luty, “Bi-Directional Holographic Information Storage Based on the Optical Reorientation of Fa Centres in KCl:Na,” Opt. Commun. 12, 147 (1974).
[CrossRef]

U. Roder, “Storage Properties of Fa Centre Holograms,” Opt. Commun. 6, 270 (1972).
[CrossRef]

T. Todorov, N. Tomova, L. Nikolova, “High Sensitivity Material With Reversible Photo-Induced Anisotropy,” Opt. Commun. 47, 123 (1983).
[CrossRef]

M. Miteva, L. Nikolova, “Polarization Characteristics of Volume Holograms in BiSiO,” Opt. Commun. 42, 307 (1982).
[CrossRef]

Opt. Laser Technol. (1)

M. R. B. Forshaw, “Thick Holograms: A Survey,” Opt. Laser Technol. 7, 28 (1974).
[CrossRef]

Opt. Spectrosc. (1)

Sh. D. Kakischavili, “Polarization recording of holograms,” Opt. Spectrosc. 33, 324 (1972).

Phys. Rev. Lett. (1)

I. Schneider, “Dispersion and Diffraction by Anisotropic Centers in Alkali Halide,” Phys. Rev. Lett. 32, 412 (1974).
[CrossRef]

Other (3)

H. M. Smith, Holographic Materials (Springer, Berlin, 1977).
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), Chap. 14.

Rohm and Haas, red Plexiglas 2423, West Hill, Ont.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Holographic real-time recording-reading configuration.

Fig. 2
Fig. 2

Diffraction efficiency (%) vs exposure time (minutes). Recording power is a parameter. Grating frequency is 30 l/mm, and intensity beam ratio is 2.5.

Fig. 3
Fig. 3

Photostationary diffraction efficiency vs recording beam power.

Fig. 4
Fig. 4

Holographic sensitivity vs recording beam power. density is a parameter.

Fig. 5
Fig. 5

Recording geometry showing the polarization of the recording and reading beams.

Fig. 6
Fig. 6

Photostationary diffraction efficiency (%) vs polarization angle (c) of the reconstruction red light. Grating frequency was ~30 l/mm.

Fig. 7
Fig. 7

Diffraction efficiency polar plot: (a) data taken from Fig. 6; (b) data taken from Ref. 26, where BiSiO crystals showing birefringence were used. Crystal thickness is 3.7 mm and electrical field is 6 kV/cm.

Fig. 8
Fig. 8

Photostationary diffraction efficiency (%) vs recording beams polarizing angle (degrees). Analyzing beam (red light) was perpendicularly polarized to the plane of incidence. Grating frequency was ~40 l/mm.

Fig. 9
Fig. 9

Figures showing the diffracted orders for (a) plane grating, recording and reading beams polarizations were perpendicular to the plane of incidence; (b) plane grating, recording beams polarizations were orthogonal to each other. Central spot is zeroth order reduced in intensity with a Polaroid which also covered first-order path. +1 and −1 orders polarization was 90° with respect to the zeroth-order polarization; (c), volume grating (grating frequency was ~380 l/mm). Recording beams polarization were orthogonal to each other. Zeroth order was reduced in intensity with a Polaroid. +1 order polarization was 90 with respect to zeroth order.

Fig. 10
Fig. 10

(a) Holographic image given by a Fourier hologram recorded with red dyed plastic. A Polaroid was interposed in the first and zeroth order path to reduce zeroth-order intensity. Polarization of the light that formed the image was 90° with respect to the zeroth order polarization. (b) Magnified portion of the holographic image.

Fig. 11
Fig. 11

Diffraction efficiency vs time (minutes). The erasing period is shorter for curve b because at this period the reference beam alone illuminated the plate. For curve a no light was present at the erasing time.

Metrics