Abstract

Atmospheric scattering and absorption tend to reduce appreciably the spatial resolution of satellite images of the earth’s surface. Photons that were reflected by the surface out of the field of view are scattered by the atmosphere into the field of view(adjacency effect). As a result the apparent field of view is increased. The atmospheric effect on the spatial resolution is calculated and compared with the sensor resolution. It is found that the 30-m resolution of the Landsat Thematic Mapper (TM) is reduce to 100 m by a hazy atmosphere. Consequently, simple empirical expressions are developed for the upward radiance at nadir for a given nonuniform surface reflectivity and for the atmospheric modulation transfer function (MTF). These expressions relate the radiance above a field with a background of different reflectivity (nonuniform surface) to the radiance above the same field if the surface is uniform. These expressions are used to deduce the noise equivalent surface reflectance (NEΔρ) and the SNR due to the atmospheric path radiance fluctuations caused by the adjacency effect. It is shown that in the near IR the NEΔρ due to the radiance fluctuations is ~0.01.

© 1984 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Herman, S. R. Browning, “The Effect of Atmospheric Path on Airborne Multispectral Sensors,” J. Atmos. Sci. 32, 1430 (1975).
    [CrossRef]
  2. R. S. Fraser, “Computed Atmospheric Corrections for Satellite Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 51, 64 (1974).
  3. R. S. Fraser, Om. P. Bahethi, A. D. Al-Abbas, “The Effect of the Atmosphere on Classification of Satellite Observations to Identify Surface Features,” Remote Sensing Environ. 6, 229 (1977).
    [CrossRef]
  4. R. B. Horvath, J. G. Polcyn, C. Fabian, “Effects of Atmospheric Path on Airborne Multispectral Sensors,” Remote Sensing Environ. 1, 203 (1970).
    [CrossRef]
  5. A. P. Odell, J. A. Weinman, “The Effect of Atmospheric Haze on Images of the Earth’s Surface,” J. Geophys. Res. 80, 5035 (1975).
    [CrossRef]
  6. Y. J. Kaufman, “Effect of the Earth’s Atmosphere on the Contrast for Zenith Observation,” J. Geophys. Res. 84, 165 (1979).
    [CrossRef]
  7. W. A. Pearce, A Study of the Effects of the Atmosphere on Thematic Mapper Observations, Report 004-77 (EG&G/Washington Analytical Service Center, Riverdale, Md., 1977), p. 136.
  8. Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and Their Correction in Airborned Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).
  9. Y. Haba, Y. Kawata, T. Kusaka, S. Ueno, “The System of Correcting Remotely Sensed Earth Imagery for Atmospheric Effects,” in Proceedings, Thirteenth International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).
  10. J. Otterman, R. S. Fraser, “Adjacency Effects on Imaging by Surface Reflection and Atmospheric Scattering: Cross Radiance to Zenith,” Appl. Opt. 18, 2852 (1979).
    [CrossRef] [PubMed]
  11. Yu. Mekler, Y. J. Kaufman, “The Effect of the Earth’s Atmosphere on Contrast Reduction for a Nonuniform Surface Albedo and Two-Halves’ Field,” J. Geophys. Res. 85, 4067 (1980).
    [CrossRef]
  12. J. V. Dave, “Effect of Atmospheric Conditions on Remote Sensing of Surface Nonhomogenity,” Photogr. Eng. Remote Sensing 46, 1173 (1980).
  13. D. Tanre, M. Herman, P. Y. Deschamps, “Influence of the Background Contribution upon Space Measurements of Ground Reflectance,” Appl. Opt. 20, 3676 (1981).
    [CrossRef] [PubMed]
  14. Y. J. Kaufman, “Solution of the Equation of Radiative Transfer for Remote Sensing over Nonuniform Surface Reflectivity,” J. Geophys. Res. 87, 4137 (1982).
    [CrossRef]
  15. Yu. Mekler, Y. J. Kaufman, “Contrast Reduction by the Atmosphere and Retrieval of Nonuniform Surface Reflectance,” Appl. Opt. 21, 310 (1982).
    [CrossRef] [PubMed]
  16. Y. J. Kaufman, R. S. Fraser, “The Atmospheric Effect on Classification of Finite Fields,” Remote Sensing Environ. 15, 95 (1984).
    [CrossRef]
  17. Y. J. Kaufman, J. H. Joseph, “Evaluation of Surface Albedos and Extinction Characteristics of the Atmosphere from Satellite Images,” J. Geophys. Res. 87, 1287 (1982).
    [CrossRef]
  18. Y. J. Kaufman, “Combined Eye–Atmosphere Visibility Model,” Appl. Opt. 20, 1525 (1981).
    [CrossRef] [PubMed]
  19. E. Turner, “Signature Variations Due to Atmospheric Effects,” in Proceedings, Tenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1975).
  20. J. V. Dave, “Extensive Datasets of the Diffuse Radiation in Realistic Atmospheric Models with Aerosols and Common Absorbing Gases,” Sol. Energy 21, 361 (1978).
    [CrossRef]
  21. H. R. Gordon, “Removal of Atmospheric Effects from Satellite Imagery of the Oceans,” Appl. Opt. 17, 1631 (1978).
    [CrossRef] [PubMed]
  22. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  23. R. S. Fraser, “Satellite Measurement of Mass of Sahara Dust in the Atmosphere,” Appl. Opt. 15, 2471 (1976).
    [CrossRef] [PubMed]
  24. Landsat 3 Reference Manual (General Electric Space Division, Valley Forge Space Center, Pa.
  25. J. L. Engel, “Thematic Mapper—an Interim Report on Anticipated Performance,” in Proceedings, AIAA Sensor Systems for the 80’s (1980), p. 25.
  26. S. Oove, “The Photographic Image,” Prog. Opt. 7, 301 (1968).
  27. J. T. Peterson, E. C. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, “Atmospheric Turbidity over Central North Carolina,” Appl. Meteorol. 20, 229 (1981).
    [CrossRef]
  28. R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1972).
  29. J. F. Potter, “Correcting Landsat Data for Changing in Sun Angle, Haze Level, and Background Reflectance,” in Proceedings, 1976 Machine Processing of Remotely Sensed Data Symposium, IEEE 76CH 1103-IMPRSD, 2B-6.
  30. R. E. Turner, “Elimination of Atmospheric Effects from Remote Sensor Data,” Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).
  31. P. N. Slater, Atmospheric Correction Using an Orbital Pointable Imaging System (ORI, Inc., 1400 Spring St., Silver Spring, Md., 1980).
  32. D. E. Pitts, G. Badhar, “Field Size, Length, and Width Distribution based on LACIE Ground Truth Data,” Remote Sensing Environ. 10, 201 (1980).
    [CrossRef]

1984 (1)

Y. J. Kaufman, R. S. Fraser, “The Atmospheric Effect on Classification of Finite Fields,” Remote Sensing Environ. 15, 95 (1984).
[CrossRef]

1982 (3)

Y. J. Kaufman, J. H. Joseph, “Evaluation of Surface Albedos and Extinction Characteristics of the Atmosphere from Satellite Images,” J. Geophys. Res. 87, 1287 (1982).
[CrossRef]

Y. J. Kaufman, “Solution of the Equation of Radiative Transfer for Remote Sensing over Nonuniform Surface Reflectivity,” J. Geophys. Res. 87, 4137 (1982).
[CrossRef]

Yu. Mekler, Y. J. Kaufman, “Contrast Reduction by the Atmosphere and Retrieval of Nonuniform Surface Reflectance,” Appl. Opt. 21, 310 (1982).
[CrossRef] [PubMed]

1981 (3)

1980 (3)

D. E. Pitts, G. Badhar, “Field Size, Length, and Width Distribution based on LACIE Ground Truth Data,” Remote Sensing Environ. 10, 201 (1980).
[CrossRef]

Yu. Mekler, Y. J. Kaufman, “The Effect of the Earth’s Atmosphere on Contrast Reduction for a Nonuniform Surface Albedo and Two-Halves’ Field,” J. Geophys. Res. 85, 4067 (1980).
[CrossRef]

J. V. Dave, “Effect of Atmospheric Conditions on Remote Sensing of Surface Nonhomogenity,” Photogr. Eng. Remote Sensing 46, 1173 (1980).

1979 (2)

Y. J. Kaufman, “Effect of the Earth’s Atmosphere on the Contrast for Zenith Observation,” J. Geophys. Res. 84, 165 (1979).
[CrossRef]

J. Otterman, R. S. Fraser, “Adjacency Effects on Imaging by Surface Reflection and Atmospheric Scattering: Cross Radiance to Zenith,” Appl. Opt. 18, 2852 (1979).
[CrossRef] [PubMed]

1978 (2)

J. V. Dave, “Extensive Datasets of the Diffuse Radiation in Realistic Atmospheric Models with Aerosols and Common Absorbing Gases,” Sol. Energy 21, 361 (1978).
[CrossRef]

H. R. Gordon, “Removal of Atmospheric Effects from Satellite Imagery of the Oceans,” Appl. Opt. 17, 1631 (1978).
[CrossRef] [PubMed]

1977 (1)

R. S. Fraser, Om. P. Bahethi, A. D. Al-Abbas, “The Effect of the Atmosphere on Classification of Satellite Observations to Identify Surface Features,” Remote Sensing Environ. 6, 229 (1977).
[CrossRef]

1976 (1)

1975 (2)

A. P. Odell, J. A. Weinman, “The Effect of Atmospheric Haze on Images of the Earth’s Surface,” J. Geophys. Res. 80, 5035 (1975).
[CrossRef]

B. M. Herman, S. R. Browning, “The Effect of Atmospheric Path on Airborne Multispectral Sensors,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

1974 (1)

R. S. Fraser, “Computed Atmospheric Corrections for Satellite Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 51, 64 (1974).

1970 (1)

R. B. Horvath, J. G. Polcyn, C. Fabian, “Effects of Atmospheric Path on Airborne Multispectral Sensors,” Remote Sensing Environ. 1, 203 (1970).
[CrossRef]

1968 (1)

S. Oove, “The Photographic Image,” Prog. Opt. 7, 301 (1968).

Al-Abbas, A. D.

R. S. Fraser, Om. P. Bahethi, A. D. Al-Abbas, “The Effect of the Atmosphere on Classification of Satellite Observations to Identify Surface Features,” Remote Sensing Environ. 6, 229 (1977).
[CrossRef]

Badhar, G.

D. E. Pitts, G. Badhar, “Field Size, Length, and Width Distribution based on LACIE Ground Truth Data,” Remote Sensing Environ. 10, 201 (1980).
[CrossRef]

Bahethi, Om. P.

R. S. Fraser, Om. P. Bahethi, A. D. Al-Abbas, “The Effect of the Atmosphere on Classification of Satellite Observations to Identify Surface Features,” Remote Sensing Environ. 6, 229 (1977).
[CrossRef]

Berri, G. J.

J. T. Peterson, E. C. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, “Atmospheric Turbidity over Central North Carolina,” Appl. Meteorol. 20, 229 (1981).
[CrossRef]

Browning, S. R.

B. M. Herman, S. R. Browning, “The Effect of Atmospheric Path on Airborne Multispectral Sensors,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Dave, J. V.

J. V. Dave, “Effect of Atmospheric Conditions on Remote Sensing of Surface Nonhomogenity,” Photogr. Eng. Remote Sensing 46, 1173 (1980).

J. V. Dave, “Extensive Datasets of the Diffuse Radiation in Realistic Atmospheric Models with Aerosols and Common Absorbing Gases,” Sol. Energy 21, 361 (1978).
[CrossRef]

Deschamps, P. Y.

Engel, J. L.

J. L. Engel, “Thematic Mapper—an Interim Report on Anticipated Performance,” in Proceedings, AIAA Sensor Systems for the 80’s (1980), p. 25.

Fabian, C.

R. B. Horvath, J. G. Polcyn, C. Fabian, “Effects of Atmospheric Path on Airborne Multispectral Sensors,” Remote Sensing Environ. 1, 203 (1970).
[CrossRef]

Flowers, E. C.

J. T. Peterson, E. C. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, “Atmospheric Turbidity over Central North Carolina,” Appl. Meteorol. 20, 229 (1981).
[CrossRef]

Fraser, R. S.

Y. J. Kaufman, R. S. Fraser, “The Atmospheric Effect on Classification of Finite Fields,” Remote Sensing Environ. 15, 95 (1984).
[CrossRef]

J. Otterman, R. S. Fraser, “Adjacency Effects on Imaging by Surface Reflection and Atmospheric Scattering: Cross Radiance to Zenith,” Appl. Opt. 18, 2852 (1979).
[CrossRef] [PubMed]

R. S. Fraser, Om. P. Bahethi, A. D. Al-Abbas, “The Effect of the Atmosphere on Classification of Satellite Observations to Identify Surface Features,” Remote Sensing Environ. 6, 229 (1977).
[CrossRef]

R. S. Fraser, “Satellite Measurement of Mass of Sahara Dust in the Atmosphere,” Appl. Opt. 15, 2471 (1976).
[CrossRef] [PubMed]

R. S. Fraser, “Computed Atmospheric Corrections for Satellite Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 51, 64 (1974).

Gordon, H. R.

Haba, Y.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and Their Correction in Airborned Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

Y. Haba, Y. Kawata, T. Kusaka, S. Ueno, “The System of Correcting Remotely Sensed Earth Imagery for Atmospheric Effects,” in Proceedings, Thirteenth International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).

Herman, B. M.

B. M. Herman, S. R. Browning, “The Effect of Atmospheric Path on Airborne Multispectral Sensors,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

Herman, M.

Horvath, R. B.

R. B. Horvath, J. G. Polcyn, C. Fabian, “Effects of Atmospheric Path on Airborne Multispectral Sensors,” Remote Sensing Environ. 1, 203 (1970).
[CrossRef]

Joseph, J. H.

Y. J. Kaufman, J. H. Joseph, “Evaluation of Surface Albedos and Extinction Characteristics of the Atmosphere from Satellite Images,” J. Geophys. Res. 87, 1287 (1982).
[CrossRef]

Kaufman, Y. J.

Y. J. Kaufman, R. S. Fraser, “The Atmospheric Effect on Classification of Finite Fields,” Remote Sensing Environ. 15, 95 (1984).
[CrossRef]

Yu. Mekler, Y. J. Kaufman, “Contrast Reduction by the Atmosphere and Retrieval of Nonuniform Surface Reflectance,” Appl. Opt. 21, 310 (1982).
[CrossRef] [PubMed]

Y. J. Kaufman, J. H. Joseph, “Evaluation of Surface Albedos and Extinction Characteristics of the Atmosphere from Satellite Images,” J. Geophys. Res. 87, 1287 (1982).
[CrossRef]

Y. J. Kaufman, “Solution of the Equation of Radiative Transfer for Remote Sensing over Nonuniform Surface Reflectivity,” J. Geophys. Res. 87, 4137 (1982).
[CrossRef]

Y. J. Kaufman, “Combined Eye–Atmosphere Visibility Model,” Appl. Opt. 20, 1525 (1981).
[CrossRef] [PubMed]

Yu. Mekler, Y. J. Kaufman, “The Effect of the Earth’s Atmosphere on Contrast Reduction for a Nonuniform Surface Albedo and Two-Halves’ Field,” J. Geophys. Res. 85, 4067 (1980).
[CrossRef]

Y. J. Kaufman, “Effect of the Earth’s Atmosphere on the Contrast for Zenith Observation,” J. Geophys. Res. 84, 165 (1979).
[CrossRef]

Kawata, Y.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and Their Correction in Airborned Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

Y. Haba, Y. Kawata, T. Kusaka, S. Ueno, “The System of Correcting Remotely Sensed Earth Imagery for Atmospheric Effects,” in Proceedings, Thirteenth International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).

Kusaka, T.

Y. Haba, Y. Kawata, T. Kusaka, S. Ueno, “The System of Correcting Remotely Sensed Earth Imagery for Atmospheric Effects,” in Proceedings, Thirteenth International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and Their Correction in Airborned Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

Mekler, Yu.

Yu. Mekler, Y. J. Kaufman, “Contrast Reduction by the Atmosphere and Retrieval of Nonuniform Surface Reflectance,” Appl. Opt. 21, 310 (1982).
[CrossRef] [PubMed]

Yu. Mekler, Y. J. Kaufman, “The Effect of the Earth’s Atmosphere on Contrast Reduction for a Nonuniform Surface Albedo and Two-Halves’ Field,” J. Geophys. Res. 85, 4067 (1980).
[CrossRef]

Odell, A. P.

A. P. Odell, J. A. Weinman, “The Effect of Atmospheric Haze on Images of the Earth’s Surface,” J. Geophys. Res. 80, 5035 (1975).
[CrossRef]

Oove, S.

S. Oove, “The Photographic Image,” Prog. Opt. 7, 301 (1968).

Otterman, J.

Pearce, W. A.

W. A. Pearce, A Study of the Effects of the Atmosphere on Thematic Mapper Observations, Report 004-77 (EG&G/Washington Analytical Service Center, Riverdale, Md., 1977), p. 136.

Peterson, J. T.

J. T. Peterson, E. C. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, “Atmospheric Turbidity over Central North Carolina,” Appl. Meteorol. 20, 229 (1981).
[CrossRef]

Pitts, D. E.

D. E. Pitts, G. Badhar, “Field Size, Length, and Width Distribution based on LACIE Ground Truth Data,” Remote Sensing Environ. 10, 201 (1980).
[CrossRef]

Polcyn, J. G.

R. B. Horvath, J. G. Polcyn, C. Fabian, “Effects of Atmospheric Path on Airborne Multispectral Sensors,” Remote Sensing Environ. 1, 203 (1970).
[CrossRef]

Potter, J. F.

J. F. Potter, “Correcting Landsat Data for Changing in Sun Angle, Haze Level, and Background Reflectance,” in Proceedings, 1976 Machine Processing of Remotely Sensed Data Symposium, IEEE 76CH 1103-IMPRSD, 2B-6.

Reynolds, C. L.

J. T. Peterson, E. C. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, “Atmospheric Turbidity over Central North Carolina,” Appl. Meteorol. 20, 229 (1981).
[CrossRef]

Rudisill, J. H.

J. T. Peterson, E. C. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, “Atmospheric Turbidity over Central North Carolina,” Appl. Meteorol. 20, 229 (1981).
[CrossRef]

Slater, P. N.

P. N. Slater, Atmospheric Correction Using an Orbital Pointable Imaging System (ORI, Inc., 1400 Spring St., Silver Spring, Md., 1980).

Spencer, M. M.

R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1972).

Tanre, D.

Terashita, Y.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and Their Correction in Airborned Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

Turner, E.

E. Turner, “Signature Variations Due to Atmospheric Effects,” in Proceedings, Tenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1975).

Turner, R. E.

R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1972).

R. E. Turner, “Elimination of Atmospheric Effects from Remote Sensor Data,” Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

Ueno, S.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and Their Correction in Airborned Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

Y. Haba, Y. Kawata, T. Kusaka, S. Ueno, “The System of Correcting Remotely Sensed Earth Imagery for Atmospheric Effects,” in Proceedings, Thirteenth International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).

Weinman, J. A.

A. P. Odell, J. A. Weinman, “The Effect of Atmospheric Haze on Images of the Earth’s Surface,” J. Geophys. Res. 80, 5035 (1975).
[CrossRef]

Appl. Meteorol. (1)

J. T. Peterson, E. C. Flowers, G. J. Berri, C. L. Reynolds, J. H. Rudisill, “Atmospheric Turbidity over Central North Carolina,” Appl. Meteorol. 20, 229 (1981).
[CrossRef]

Appl. Opt. (6)

J. Atmos. Sci. (1)

B. M. Herman, S. R. Browning, “The Effect of Atmospheric Path on Airborne Multispectral Sensors,” J. Atmos. Sci. 32, 1430 (1975).
[CrossRef]

J. Geophys. Res. (5)

A. P. Odell, J. A. Weinman, “The Effect of Atmospheric Haze on Images of the Earth’s Surface,” J. Geophys. Res. 80, 5035 (1975).
[CrossRef]

Y. J. Kaufman, “Effect of the Earth’s Atmosphere on the Contrast for Zenith Observation,” J. Geophys. Res. 84, 165 (1979).
[CrossRef]

Y. J. Kaufman, “Solution of the Equation of Radiative Transfer for Remote Sensing over Nonuniform Surface Reflectivity,” J. Geophys. Res. 87, 4137 (1982).
[CrossRef]

Yu. Mekler, Y. J. Kaufman, “The Effect of the Earth’s Atmosphere on Contrast Reduction for a Nonuniform Surface Albedo and Two-Halves’ Field,” J. Geophys. Res. 85, 4067 (1980).
[CrossRef]

Y. J. Kaufman, J. H. Joseph, “Evaluation of Surface Albedos and Extinction Characteristics of the Atmosphere from Satellite Images,” J. Geophys. Res. 87, 1287 (1982).
[CrossRef]

Photogr. Eng. Remote Sensing (1)

J. V. Dave, “Effect of Atmospheric Conditions on Remote Sensing of Surface Nonhomogenity,” Photogr. Eng. Remote Sensing 46, 1173 (1980).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

R. S. Fraser, “Computed Atmospheric Corrections for Satellite Data,” Proc. Soc. Photo-Opt. Instrum. Eng. 51, 64 (1974).

Prog. Opt. (1)

S. Oove, “The Photographic Image,” Prog. Opt. 7, 301 (1968).

Remote Sensing Environ. (4)

D. E. Pitts, G. Badhar, “Field Size, Length, and Width Distribution based on LACIE Ground Truth Data,” Remote Sensing Environ. 10, 201 (1980).
[CrossRef]

R. S. Fraser, Om. P. Bahethi, A. D. Al-Abbas, “The Effect of the Atmosphere on Classification of Satellite Observations to Identify Surface Features,” Remote Sensing Environ. 6, 229 (1977).
[CrossRef]

R. B. Horvath, J. G. Polcyn, C. Fabian, “Effects of Atmospheric Path on Airborne Multispectral Sensors,” Remote Sensing Environ. 1, 203 (1970).
[CrossRef]

Y. J. Kaufman, R. S. Fraser, “The Atmospheric Effect on Classification of Finite Fields,” Remote Sensing Environ. 15, 95 (1984).
[CrossRef]

Sol. Energy (1)

J. V. Dave, “Extensive Datasets of the Diffuse Radiation in Realistic Atmospheric Models with Aerosols and Common Absorbing Gases,” Sol. Energy 21, 361 (1978).
[CrossRef]

Other (11)

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1972).

J. F. Potter, “Correcting Landsat Data for Changing in Sun Angle, Haze Level, and Background Reflectance,” in Proceedings, 1976 Machine Processing of Remotely Sensed Data Symposium, IEEE 76CH 1103-IMPRSD, 2B-6.

R. E. Turner, “Elimination of Atmospheric Effects from Remote Sensor Data,” Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

P. N. Slater, Atmospheric Correction Using an Orbital Pointable Imaging System (ORI, Inc., 1400 Spring St., Silver Spring, Md., 1980).

Landsat 3 Reference Manual (General Electric Space Division, Valley Forge Space Center, Pa.

J. L. Engel, “Thematic Mapper—an Interim Report on Anticipated Performance,” in Proceedings, AIAA Sensor Systems for the 80’s (1980), p. 25.

E. Turner, “Signature Variations Due to Atmospheric Effects,” in Proceedings, Tenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1975).

W. A. Pearce, A Study of the Effects of the Atmosphere on Thematic Mapper Observations, Report 004-77 (EG&G/Washington Analytical Service Center, Riverdale, Md., 1977), p. 136.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and Their Correction in Airborned Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1978).

Y. Haba, Y. Kawata, T. Kusaka, S. Ueno, “The System of Correcting Remotely Sensed Earth Imagery for Atmospheric Effects,” in Proceedings, Thirteenth International Symposium on Remote Sensing of Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the contributions to the upward radiance.

Fig. 2
Fig. 2

Transfer fraction due to the sensor or atmospheric effect is shown to have similar effects on the upward radiance.

Fig. 3
Fig. 3

Transfer fraction [fraction of radiance detected above a given field but originating from the surrounding fields—Eq. (3)] as a function of the field edge length. Results are plotted for three aerosol optical thicknesses τA for a wavelength of 550 nm and four combinations of the field reflectance ρf and the background reflectance ρB. Lines denote the Monte Carlo calculations, and stars denote the empirical approximation [Eq. (6)].

Fig. 4
Fig. 4

Normalized MTF as a function of the spatial frequency for three levels of atmospheric haziness and a wavelength of 470 nm. Solid lines denote the Monte Carlo calculations,7 dashed lines denote the empirical approximation Eq. (9), and symbols represent the physical approximation.14

Fig. 5
Fig. 5

Same as Fig. 4 but for a wavelength of 550 nm.

Fig. 6
Fig. 6

Same as Fig. 4 but for a wavelength of 1650 nm.

Fig. 7
Fig. 7

Square-wave response of the Landsat MSS (80-m resolution24) and TM (30-m resolution25) sensors. The advanced sensor curve was obtained from the TM curve for twice the resolution (15 m).

Fig. 8
Fig. 8

Landsat MSS MTF curve (solid line), the curve with atmospheric effect (for τA = 0.5 and wavelength 550 nm) (short dashed line) and with atmospheric effect after applying correction for a uniform surface (long dashed line). The thin lines show the MTF values of 0.35 and 0.5.

Fig. 9
Fig. 9

Same as Fig. 8 but for the Landsat TM sensor.

Fig. 10
Fig. 10

Same as Fig. 8 but for the advanced sensor.

Fig. 11
Fig. 11

Probability density of the transfer fraction for three ratios r of pixel size to field size. The percentage shown for zero transfer fraction represents percentage of the area of the delta function at this point.

Fig. 12
Fig. 12

Comparison between the sensor transfer fraction (solid lines) and the atmospheric transfer fraction (dashed lines) as a function of the field length for three levels of atmospheric haziness and three sensor resolutions. The field sizes corresponding to urban and agricultural areas are indicated.

Tables (2)

Tables Icon

Table I Ratio Between Average Pixel Reflectance ρf and the Standard Deviation of Background Reflectance σ(ρB) a

Tables Icon

Table II Spatial Resolution (in Meters) of Three Sensors for Two Responses

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

L = L 0 + L s + L D ,
L f ( x ) = L u ( ρ B ) ξ ( x ) + L u ( ρ f ) [ 1 - ξ ( x ) ] ;
ξ ( x ) = L f ( x ) - L u ( ρ f ) L u ( ρ B ) - L u ( ρ f ) .
L L 0 + T ρ ,
L 0 + T { ξ ( x ) δ B + [ 1 - ξ ( x ) ] δ f } .
ξ ( x ) = 0.7 τ R exp ( - x / 2 H R ) + τ A [ 0.37 exp ( - x / H A ) + 0.32 exp ( - x / 6 H A ) ] ,
NE Δ ρ = σ ( L f ) T = ξ σ ( ρ B ) ,
signal noise = [ 1 - ξ ( x ) ] ρ ¯ f ξ ( x ) σ ( ρ B ) .
signal noise 5 ρ ¯ f σ ( ρ B ) .
M ( k ) = F [ L N ( x ) ] / F [ ρ ( x ) ] ,
M N ( k ) = 1 - 0.5 τ R [ 1 - exp ( - 2.5 k H R ) ] - 0.7 λ - 0.2 τ A × [ 1 - exp ( 1.3 k H A ) ] ,
M ( 0 ) = F D [ exp ( - τ 0 ) + t ] / π F 0 μ 0 ,
L ( ρ ) = L ( ρ = 0 ) + ρ F D [ exp ( - τ 0 ) + t ] / π ,
M ( 0 ) = L ( ρ ) - L ( ρ = 0 ) ρ F 0 μ 0 .
L ( x , y ) = L 0 + F - [ M * ( k ) F + [ ρ ( x , y ) ] } F 0 μ 0 ,
M ( k ) = π 4 [ S ( k ) + S ( 3 k ) - S ( 5 k ) + / 7 1 S ( 7 k ) ] .
ξ ¯ = 0 1 P ( ξ ) ξ d ξ .
M ( k ) = L max ( k ) - L min ( k ) 2 Δ ρ F 0 μ 0 ,
L max ( 0 ) = L 0 + F D [ exp ( - τ 0 ) + t ] ( ρ + Δ ρ ) / π F 0 , L min ( 0 ) = L 0 + F D [ exp ( - τ 0 ) + t ] ( ρ - Δ ρ ) / π F 0 ,
M ( 0 ) = F D [ exp ( - τ 0 ) + t ] / π F 0 μ 0 .
L ( r ) = L ( ρ = 0 ) + F - [ a ( k ) M ( k ) ] F 0 μ 0 ,
ρ = L ( ρ ) - L ( ρ = 0 ) F D [ exp ( - τ 0 ) + t ] / π .
ρ * ( r ) = F - 1 [ a ( k ) M ( k ) ] F 0 μ 0 F D [ exp ( - τ 0 ) + t ] / π ,
ρ * ( r ) = F - 1 a ( k ) M ( K ) M ( 0 ) .
M * ( k ) = M ( k ) M ( 0 ) .

Metrics